909 resultados para Behavioural problems in classrooms
Resumo:
We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.
Resumo:
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.
Resumo:
Striga hermonthica and Striga asiatica are obligate root parasites that cause serious problems in the production of staple cereal crops in Africa. Because of the high levels of infestation, there is an urgent need to control these weeds. A potentially useful control option is depletion of the soil seed bank by suicidal germination, which involves germination of the seeds in the absence of host plants. Suicidal germination is often mentioned in the literature, but not considered realistic, because of the alleged untimely decomposition of the stimulants in the soil, despite the fact that some encouraging results were reported around 1980. The alleged instability has prevented active research in this direction for the past 20–25 years. Five newly designed synthetic germination stimulants were investigated as candidates for suicidal germination. An important issue is the persistence of these stimulants in soil. Packets with Striga spp. seeds were put in pots with soil and then treated with aqueous solutions of the stimulants. All five compounds induced germination under these conditions, with percentages varying between 18% and 98% depending on stimulant and species. There were no noticeable signs of decomposition of the stimulants. The best performing stimulant is derived from 1-tetralone. We conclude that synthetic strigolactones analogues have excellent prospects for use in combating parasitic weeds. Further testing will be needed to evaluate whether such prospects can be realised in the field.
Resumo:
Teaching mathematics to students in the biological sciences is often fraught with difficulty. Students often discover mathematics to be a very 'dry' subject in which it is difficult to see the motivation of learning it given its often abstract application. In this paper I advocate the use of mathematical modelling as a method for engaging students in understanding the use of mathematics in helping to solve problems in the Biological Sciences. The concept of mathematics as a laboratory tool is introduced and the importance of presenting students with relevant, real-world examples of applying mathematics in the Biological Sciences is discussed.
Resumo:
As in any technology systems, analysis and design issues are among the fundamental challenges in persuasive technology. Currently, the Persuasive Systems Development (PSD) framework is considered to be the most comprehensive framework for designing and evaluation of persuasive systems. However, the framework is limited in terms of providing detailed information which can lead to selection of appropriate techniques depending on the variable nature of users or use over time. In light of this, we propose a model which is intended for analysing and implementing behavioural change in persuasive technology called the 3D-RAB model. The 3D-RAB model represents the three dimensional relationships between attitude towards behaviour, attitude towards change or maintaining a change, and current behaviour, and distinguishes variable levels in a user’s cognitive state. As such it provides a framework which could be used to select appropriate techniques for persuasive technology.
Resumo:
The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena