916 resultados para Behavioral domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic yersiniae secrete a set of antihost proteins, called Yops, by a type III secretion mechanism. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis and Yersinia enterocolitica translocate cytotoxin YopE across the host cell plasma membrane. Several lines of evidence suggest that tyrosine phosphatase YopH follows the same pathway. We analyzed internalization of YopE and YopH into murine PU5-1.8 macrophages by using recombinant Y. enterocolitica producing truncated YopE and YopH proteins fused to a calmodulin-dependent adenylate cyclase. The YopE-cyclase and YopH-cyclase hybrids were readily secreted by Y. enterocolitica. The N-terminal domain required for secretion was not longer than 15 residues of YopE and 17 residues of YopH. Internalization into eukaryotic cells, revealed by cAMP production, only required the N-terminal 50 amino acid residues of YopE and the N-terminal 71 amino acid residues of YopH. YopE and YopH are thus modular proteins composed of a secretion domain, a translocation domain, and an effector domain. Translocation of YopE and YopH across host cell's membranes was also dependent on the secretion of YopB and YopD by the same bacterium. The cyclase fusion approach could be readily extended to study the fate of other proteins secreted by invasive bacterial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optokinetic and phototactic behaviors of zebrafish larvae were examined for their usefulness in screening for recessive defects in the visual system. The optokinetic response can be reliably and rapidly detected in 5-day larvae, whereas the phototactic response of larvae is variable and not robust enough to be useful for screening. We therefore measured optokinetic responses of mutagenized larvae as a genetic screen for visual system defects. Third-generation larvae, representing 266 mutagenized genomes, were examined for abnormal optokinetic responses. Eighteen optokinetic-defective mutants were identified and two mutants that did not show obvious morphological defects, no optokinetic response a (noa) and partial optokinetic response a (poa), were studied further. We recorded the electroretinogram (ERG) to determine whether these two mutations affect the retina. The b-wave of noa larvae was grossly abnormal, being delayed in onset and significantly reduced in amplitude. In contrast, the ERG waveform of poa larvae was normal, although the b-wave was reduced in amplitude in bright light. Histologically, the retinas of noa and poa larvae appeared normal. We conclude that noa larvae have a functional defect in the outer retina, whereas the outer retina of poa larvae is likely to be normal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides of 5 and 8 residues encoded by the leaders of attenuation regulated chloramphenicol-resistance genes inhibit the peptidyltransferase of microorganisms from the three kingdoms. Therefore, the ribosomal target for the peptides is likely to be a conserved structure and/or sequence. The inhibitor peptides "footprint" to nucleotides of domain V in large subunit rRNA when peptide-ribosome complexes are probed with dimethyl sulfate. Accordingly, rRNA was examined as a candidate for the site of peptide binding. Inhibitor peptides MVKTD and MSTSKNAD were mixed with rRNA phenol-extracted from Escherichia coli ribosomes. The conformation of the RNA was then probed by limited digestion with nucleases that cleave at single-stranded (T1 endonuclease) and double-stranded (V1 endonuclease) sites. Both peptides selectively altered the susceptibility of domains IV and V of 23S rRNA to digestion by T1 endonuclease. Peptide effects on cleavage by V1 nuclease were observed only in domain V. The T1 nuclease susceptibility of domain V of in vitro-transcribed 23S rRNA was also altered by the peptides, demonstrating that peptide binding to the rRNA is independent of ribosomal protein. We propose the peptides MVKTD and MSTSKNAD perturb peptidyltransferase center catalytic activities by altering the conformation of domains IV and V of 23S rRNA. These findings provide a general mechanism through which nascent peptides may cis-regulate the catalytic activities of translating ribosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored how two independent variables, one genetic (i.e., specific rat strains) and another environmental (i.e., a developmental excitotoxic hippocampal lesion), contribute to phenotypic variation. Sprague-Dawley (SD), Fischer 344 (F344), and Lewis rats underwent two grades of neonatal excitotoxic damage: small and large ventral hippocampal (SVH and LVH) lesions. Locomotion was tested before puberty [postnatal day 35 (P35)] and after puberty (P56) following exposure to a novel environment or administration of amphetamine. The behavioral effects were strain- and lesion-specific. As shown previously, SD rats with LVH lesions displayed enhanced spontaneous and amphetamine-induced locomotion as compared with controls at P56, but not at P35. SVH lesions in SD rats had no effect at any age. In F344 rats with LVH lesions, enhanced spontaneous and amphetamine-induced locomotion appeared early (P35) and was exaggerated at P56. SVH lesions in F344 rats resulted in a pattern of effects analogous to LVH lesions in SD rats--i.e., postpubertal onset of hyperlocomotion (P56). In Lewis rats, LVH lesions had no significant effect on novelty- or amphetamine-induced locomotion at any age. These data show that the degree of genetic predisposition and the extent of early induced hippocampal defect contribute to the particular pattern of behavioral outcome. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia, a disorder characterized by phenotypic heterogeneity, genetic predisposition, a developmental hippocampal abnormality, and vulnerability to environmental stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A virus-based vector was used for the transient expression of the alfalfa mosaic virus coat protein (CP) gene in protoplasts and plants. The accumulation of wild-type CP conferred strong protection against subsequent alfalfa mosaic virus infection, enabling the efficacy of CP mutants to be determined without developing transgenic plants. Expression of the CP mRNA alone without CP accumulation conferred weaker protection against infection. The activity of the N-terminal mutant CPs in protection did not correlate with their activities in genome activation. The activity of a C-terminal mutant suggested that encapsidation did not have a role in protection. Our results indicate that interaction of the CP with alfalfa mosaic virus RNA is not important in protection, thereby leaving open the possibility that interactions with host factors lead to protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All of the DNA cleavage and strand transfer events required for transposition of insertion sequence IS10 are carried out by a 46-kDa IS10-encoded transposase protein. Limited proteolysis demonstrates that transposase has two principal structural domains, a 28-kDa N-terminal domain (N alpha beta; aa 1-246) and a 17-kDa C-terminal domain (C; aa 256-402). The two domains are connected by a 1-kDa proteolytic-sensitive linker region (aa 247-255). The N-terminal domain N alpha beta can be further subdivided into domains N alpha and N beta by a weaker protease-sensitive site located 6 kDa (53 aa) from the N terminus. The N beta and N alpha beta fragments are capable of nonspecific DNA binding as determined by Southwestern blot analysis. None of the fragments alone is capable of carrying out the first step of transposition, assembly of a synaptic complex containing a pair of transposon ends. Remarkably, complete transposition activity can be reconstituted by mixing fragment N alpha beta and fragment C, with or without the intervening linker region. We infer that the structural integrity of transposase during the transitions involved in the chemical steps of the transposition reaction is maintained independent of the linker, presumably by direct contacts between and among the principal domains. Reconstitution of activity in the absence of the linker region is puzzling, however, because mutations that block strand transfer or affect insertion specificity alter linker region residues. Additional reconstitution experiments demonstrate that the N alpha region is dispensable for formation of a synaptic complex but is required for complexes to undergo cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific Ca2+ binding site that triggers contraction of molluscan muscle requires the presence of an essential light chain (ELC) from a Ca2+ binding myosin. Of the four EF hand-like domains in molluscan ELCs, only domain III has an amino acid sequence predicted to be capable of binding Ca2+. In this report, we have used mutant ELCs to locate the Ca2+ binding site in scallop myosin and to probe the role of the ELC in regulation. Point mutations in domain III of scallop ELC have no effect on Ca2+ binding. Interestingly, scallop and rat cardiac ELC chimeras support Ca2+ binding only if domain I is scallop. These results are nevertheless in agreement with structural studies on a proteolytic fragment of scallop myosin, the regulatory domain. Furthermore, Ca2+ sensitivity of the scallop myosin ATPase requires scallop ELC domain I: ELCs containing cardiac domain I convert scallop myosin to an unregulated molecule whose activity is no longer repressed in the absence of Ca2+. Despite its unusual EF hand domain sequence, our data indicate that the unique and required contribution of molluscan ELCs to Ca2+ binding and regulation of molluscan myosins resides exclusively in domain I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell adhesion in zonula adherens and desmosomal junctions is mediated by cadherins, and recent crystal structures of the first domain from murine N-cadherin provide a plausible molecular basis for this adhesive action. A structure-based sequence analysis of this adhesive domain indicates that its fold is common to all extracellular cadherin domains. The cadherin folding topology is also shown to be similar to immunoglobulin-like domains and to other Greek-key beta-sandwich structures, as diverse as domains from plant cytochromes, bacterial cellulases, and eukaryotic transcription factors. Sequence similarities between cadherins and these other molecules are very low, however, and intron patterns are also different. On balance, independent origins for a favorable folding topology seem more likely than evolutionary divergence from an ancestor common to cadherins and immunoglobulins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.