930 resultados para Basal respiration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to chemotherapy and metastases are the major causes of breast cancer-related mortality. Moreover, cancer stem cells (CSC) play critical roles in cancer progression and treatment resistance. Previously, it was found that CSC-like cells can be generated by aberrant activation of epithelial–mesenchymal transition (EMT), thereby making anti-EMT strategies a novel therapeutic option for treatment of aggressive breast cancers. Here, we report that the transcription factor FOXC2 induced in response to multiple EMT signaling pathways as well as elevated in stem cell-enriched factions is a critical determinant of mesenchymal and stem cell properties, in cells induced to undergo EMT- and CSC-enriched breast cancer cell lines. More specifically, attenuation of FOXC2 expression using lentiviral short hairpin RNA led to inhibition of the mesenchymal phenotype and associated invasive and stem cell properties, which included reduced mammosphere-forming ability and tumor initiation. Whereas, overexpression of FOXC2 was sufficient to induce CSC properties and spontaneous metastasis in transformed human mammary epithelial cells. Furthermore, a FOXC2-induced gene expression signature was enriched in the claudin-low/basal B breast tumor subtype that contains EMT and CSC features. Having identified PDGFR-β to be regulated by FOXC2, we show that the U.S. Food and Drug Administration-approved PDGFR inhibitor, sunitinib, targets FOXC2-expressing tumor cells leading to reduced CSC and metastatic properties. Thus, FOXC2 or its associated gene expression program may provide an effective target for anti-EMT-based therapies for the treatment of claudin-low/basal B breast tumors or other EMT-/CSC-enriched tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate thin-film energy dispersive spectroscopic (EDS) analyses of clays with low-atomic-number (low Z) elements (e.g. Na, Al, Si), presents a challenge to the microscopist not only because of the spatial resolution required, but also because of their susceptibility to electron beam-induced radiation damange and very low X-ray count rates. Most common clays, such as kaolinite, smectite and illite occur as submicrometer crystallites with varying degrees of structural disorder in at least two directions and may have dimensions as small as one or two unit cells along the basal direction. Thus, even clays with relatively large a-b dimenstions (e.g., 100 x 100 nm) may be <5nm in the c-axis direction. For typical conditions in an analytical electron microscope (AEM), this sample thickness gives rise to very poor count rates (<200cps) and necessitates long counting times (>300s) in order to obtain satisfactory statistical precision. Unfortunately, beam damage rates for the common clays are very rapid (<10s in imaging mode) between 100kV and 200kV. With a focussed probe for elemental analyses, the damage rate is exacerbated by a high current density and may result in loss of low-Z elements during data collection and consequent loss of analytical accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concepts used in this chapter include: Thermoregulation:- Thermoregulation refers to the body’s sophisticated, multi-system regulation of core body temperature. This hierarchical system extends from highly thermo-sensitive neurons in the preoptic region of the brain proximate to the rostral hypothalamus, down to the brain stem and spinal cord. Coupled with receptors in the skin and spine, both central and peripheral information on body temperature is integrated to inform and activate the homeostatic mechanisms which maintain our core temperature at 37oC.1 Body heat is lost through the skin, via respiration and excretions. The skin is perhaps the most important organ in regulating heat loss. Hyporthermia:- Hypothermia is defined as core body temperature less than 350C and is the result of imbalance between the body’s heat production and heat loss mechanisms. Hypothermia may be accidental, or induced for clinical benefit i.e: neurological protection (therapeutic hypothermia). External environmental conditions are the most common cause of accidental hypothermia, but not the only causes of hypothermia in humans. Other causes include metabolic imbalance; trauma; neurological and infectious disease; and exposure to toxins such as organophosphates. Therapeutic Hypothermia:- In some circumstances, hypothermia can be induced to protect neurological functioning as a result of the associated decrease in cerebral metabolism and energy consumption. Reduction in the extent of degenerative processes associated with periods of ischaemia such as excitotoxic cascade; apoptotic and necrotic cell death; microglial activation; oxidative stress and inflammation associated with ischaemia are averted or minimised.2 Mild hypothermia is the only effective treatment confirmed clinically for improving the neurological outcomes of patient’s comatose following cardiac arrest.3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamellar pathology in experimentally-induced equine laminitis associated with euglycaemic hyperinsulinaemia is substantial by the acute, clinical phase (∼48 h post-induction). However, lamellar pathology of the developmental, pre-clinical phase requires evaluation. The aim of this study was to analyse lamellar lesions both qualitatively and quantitatively, 6, 12 and 24 h after the commencement of hyperinsulinaemia. Histological and histomorphometrical analyses of lamellar pathology at each time-point included assessment of lamellar length and width, epidermal cell proliferation and death, basement membrane (BM) pathology and leucocyte infiltration. Archived lamellar tissue from control horses and those with acute, insulin-induced laminitis (48 h) was also assessed for cellular proliferative activity by counting the number of cells showing positive nuclear immuno labelling for TPX2. Decreased secondary epidermal lamellar (SEL) width and increased histomorphological evidence of SEL epidermal basal (and supra-basal) cell death occurred early in disease progression (6 h). Increased cellular proliferation in SELs, infiltration of the dermis with small numbers of leucocytes and BM damage occurred later (24 and 48 h). Some lesions, such as narrowing of the SELs, were progressive over this time period (6–48 h). Cellular pathology preceded leucocyte infiltration and BM pathology, indicating that the latter changes may be secondary or downstream events in hyperinsulinaemic laminitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims This research sought to determine optimal corn waste stream–based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. Methods and Results A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497·03 ± 55·13 mg l−1) was obtained with a 21 : 1 C : N ratio, pH 5·5–6·0; yeast extract-, NH4NO3-, NaNO3-, MgSO4·7H2O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25°C, 60–70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2–9 stable. Conclusions Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Significance and Impact of the Study Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, organoclays were prepared through ion exchange of a single cationic surfactant, hexadecyltrimethylammonium bromide and characterised by a range of methods including X-ray diffraction (XRD) and thermogravimetric analysis. Changes in the surface properties of montmorillonite and the organoclays were observed and the basal spacings of organoclays with and without p-nitrophenol were determined using XRD. The thermal stability of both organoclays were measured using thermogravimetry. As the surfactant loading increased, the expanded basal spacings were observed, and different molecular configurations of surfactant were identified. When the surfactant loading exceeded 1.0 CEC, surfactant molecules tend to adsorb strongly on the clay surface and this resulted in increased affinity to organic compounds. The adsorbed p-nitrophenol and the surfactant decomposed simultaneously. Hence, the surfactant molecules and adsorbed p-nitrophenol are important in determining the thermal stabilities of organoclays. This study enhances the understanding of the structure and adsorption properties of organoclays and has further implications for the application of organoclays as filter materials for the removal of organic pollutants in aqueous solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbiology is the science devoted lo the study of organisms that are too small to be seen by the naked eye. These microorganisms are a large and diverse group of free-living forms that exist as single cells or cell clusters. Being free-living, microbial cells are distinct from the cells of animals and plants as the latter are not able to live alone in nature but only in characteristic groups. A single microbial cell, generally, is able to carry out its life processes of growth, respiration and reproduction independently of other cells, either of the same kind or of different kinds. There are five subdisciplines of microbiology: (a) the study of bacteria (bacteriology); (b) the study of viruses (virology); (c) the study of algae (phycology); (d) the study of fungi (mycology); and (e) the study of protozoa (protozoology). In the examination of the environment, all five areas of microbiology are studied. This becomes obvious when discussing the significance of each of these groups of organisms in relation to human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin D may have anti-skin cancer effects, but population-based evidence is lacking. We therefore assessed associations between vitamin D status and skin cancer risk in an Australian subtropical community. We analyzed prospective skin cancer incidence for 11 years following baseline assessment of serum 25(OH)-vitamin D in 1,191 adults (average age 54 years) and used multivariable logistic regression analysis to adjust risk estimates for age, sex, detailed assessments of usual time spent outdoors, phenotypic characteristics, and other possible confounders. Participants with serum 25(OH)-vitamin D concentrations above 75 nmol  l(-1) versus those below 75 nmol  l(-1) more often developed basal cell carcinoma (odds ratio (OR)=1.51 (95% confidence interval (CI): 1.10-2.07, P=0.01) and melanoma (OR=2.71 (95% CI: 0.98-7.48, P=0.05)). Squamous cell carcinoma incidence tended to be lower in persons with serum 25(OH)-vitamin D concentrations above 75 nmol  l(-1) compared with those below 75 nmol  l(-1) (OR=0.67 (95% CI: 0.44-1.03, P=0.07)). Vitamin D status was not associated with skin cancer incidence when participants were classified as above or below 50 nmol  l(-1) 25(OH)-vitamin D. Our findings do not indicate that the carcinogenicity of high sun exposure can be counteracted by high vitamin D status. High sun exposure is to be avoided as a means to achieve high vitamin D status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.