994 resultados para Balló, Jordi


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research into the process of engineering design is extending the use of computers towards the acquisition, representation and application of design process knowledge in addition to the existing storage and manipulation of product-based models of design objects. This is a difficult task because the design of mechanical systems is a complex, often unpredictable process involving ill-structured problem solving skills and large amounts of knowledge, some which may be of an incomplete and subjective nature. Design problems require the integration of a variety of modes of working such as numerical, graphical, algorithmic or heuristic and demand products through synthesis, analysis and evaluation activities.

This report presents the results of a feasibility study into the blackboard approach and discusses the development of an initial prototype system that will enable an alphanumeric design dialogue between a designer and an expert to be analysed in a formal way, thus providing real-life protocol data on which to base the blackboard message structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemical techniques designed to compare species on the basis of protein differences were started by NUTTALL (1904) who used immunological methods to compare the serum of humans with that of other primates. Since then more refined techniques have led to better results at the protein level in taxonomy, The analyses of proteins are considered to be the simplest indirect approach to understanding the structure and function of the genetic material, deoxyribonucleic acid (DNA). Interest in these analyses arises because of the close relationship between protein structure and gene structure. Thus by comparing the properties of homologous proteins from different taxa one is in essence comparins their genes (GORMAN er al., 1971). It is now an established fact that genetic information coded in molecules of DNA is translated through a series of reactions in the structure of proteins which form the principal morphological units of the animal body at the molecular level of organization (SIBLEY, 1952). A convenient method of comparing molecular differences between species is to measure the electrophoretic mobility of proteins in a starch gel medium (ASPINWALL and TSUYUKI, 1968) or acrylamide gel (RAYMOND and WEINTRAUB, 1959; BOUCK and BALL, 1968). Proteins with enzymatic properties can be compared on the basis of catalytic activity in the presence or absence of inhibitors (KAPLAN et al., 1959); BAILEY et al., t 1970). A combination of gel electrophoresis and histochemical enzyme detection techniques (HUNTER and MARKERT, 1957) makes it possible to combine electrophoretic mobility anti catalytic activity comparison, Enzyme patterns exhibited in starch gel or acrylamide gel have been used to classify different species. BOUCK and BALL (1968)working with lactate dehydrogenase in species of Trout found that each Trout species had LDH pattern characterbtic of that species. ASPINIWALL and TSUYUKI (1968) used muscle protein electrophoretic patterns to identify hybrid fishes. TSUYUKI and ROBERTS (1963) and TSUYUKI et al. (1964-65) found that myogen protein patterns in fishes were species specific. The myogen patterns within one family were remarkably parallel with the existing morphometric classification and these patterns constituted a single criterion by which the fishes could be identified. The fish used in these investigations were collected from shallow waters (10 metres) of Lake Victoria in two areas, Jinja and Kisumu, using gillnets and beach-seines. The study included ten specimens of each of the following specIes: (l) Haplochromis michaeli (2) Haploehromis obems (3) Astatoreochromis ulluaudi (4) Tilapia zillii and (5) Tilapia nilotica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dasher is an information-efficient text-entry interface, which can be driven by natural continuous pointing gestures or by pressing buttons. Dasher is a competitive text-entry system wherever a full-size keyboard cannot be used - for example, when operating a computer one-handed, by joystick, touchscreen, trackball, or mouse; when operating a computer with zero hands (i.e., by head-mouse or by eyetracker); on a palmtop computer; on a wearable computer. The gazetracking version of Dasher allows an experienced user to write text as fast as normal handwriting - 29 words per minute; using a mouse, experienced users can write at 39 words per minute. Dasher can be used to write efficiently in any language. Dasher is free software (distributed under the GPL) and is available for many computer platforms, including linux, windows, and android.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hoberman 'switch-pitch ' ball is a transformable structure with a single folding and unfolding path. The underlying cubic structure has a novel mechanism that retains tetrahedral symmetry during folding. Here, we propose a generalized class of structures of a similar type that retain their full symmetry during folding. The key idea is that we require two orbits of nodes for the structure: within each orbit, any node can be copied to any other node by a symmetry operation. Each member is connected to two nodes, which may be in different orbits, by revolute joints. We will describe the symmetry analysis that reveals the symmetry of the internal mechanism modes for a switch-pitch structure. To follow the complete folding path of the structure, a nonlinear iterative predictor-corrector algorithm based on the Newton method is adopted. First, a simple tetrahedral example of the class of two-orbit structures is presented. Typical configurations along the folding path are shown. Larger members of the class of structures are also presented, all with cubic symmetry. These switch-pitch structures could have useful applications as deployable structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of sustainable manufacturing is a form of pollution prevention that integrates environmental considerations in the production of goods while focusing on efficient resource use. Taking the industrial ecology perspective, this efficiency comes from improved resource flow management. The assessment of material, energy and waste resource flows, therefore, offers a route to viewing and analysing a manufacturing system as an ecosystem using industrial ecology biological analogy and can, in turn, support the identification of improvement opportunities in the material, energy and waste flows. This application of industrial ecology at factory level is absent from the literature. This article provides a prototype methodology to apply the concepts of industrial ecology using material, energy and waste process flows to address this gap in the literature. Various modelling techniques were reviewed and candidates selected to test the prototype methodology in an industrial case. The application of the prototype methodology showed the possibility of using the material, energy and waste resource flows through the factory to link manufacturing operations and supporting facilities, and to identify potential improvements in resource use. The outcomes of the work provide a basis to build the specifications for a modelling tool that can support those analysing their manufacturing system to improve their environmental performance and move towards sustainable manufacturing. © IMechE 2012.