957 resultados para BRANCHIAL ARCH ANOMALIES
Resumo:
By analyzing the distributions of subsurface temperature and the surface wind stress anomalies in the tropical Pacific and Indian Oceans during the Indian Ocean Dipole (IOD) events, two major modes of the IOD and their formation mechanisms are revealed. (1) The subsurface temperature anomaly (STA) in the tropical Indian Ocean during the IOD events can be described as a "<" -shaped and west-east-oriented dipole pattern; in the east side of the "<" pattern, a notable tongue-like STA extends westward along the equator in the tropical eastern Indian Ocean; while in the west side of the "<" pattern, the STA has opposite sign with two centers (the southern one is stronger than the northern one in intensity) being of rough symmetry about the equator in the tropical mid-western Indian Ocean. (2) The IOD events are composed of two modes, which have similar spatial pattern but different temporal variabilities due to the large scale air-sea interactions within two independent systems. The first mode of the IOD event originates from the air-sea interaction on a scale of the tropical Pacific-Indian Ocean and coexists with ENSO. The second mode originates from the air-sea interaction on a scale of the tropical Indian Ocean and is closely associated with changes in the position and intensity of the Mascarene high pressure. The strong IOD event occurs when the two modes are in phase, and the IOD event weakens or disappears when the two modes are out of phase. Besides, the IOD events are normally strong when either of the two modes is strong. (3) The IOD event is caused by the abnormal wind stress forcing over the tropical Indian Ocean, which results in vertical transports, leading to the upwelling and pileup of seawater. This is the main dynamic processes resulting in the STA. When the anomalous easterly exists over the equatorial Indian Ocean, the cold waters upwell in the tropical eastern Indian Ocean while the warm waters pileup in the tropical western Indian Ocean, hence the thermocline in the tropical Indian Ocean is shallowed in the east and deepened in the west. The off-equator component due to the Coriolis force in the equatorial area causes the upwelling of cold waters and the shallowing of the equatorial India Ocean thermocline. On the other hand, the anomalous anticyclonic circulations and their curl fields located on both sides of the equator, cause the pileup of warm waters in the central area of their curl fields and the deepening of the equatorial Indian Ocean thermocline off the equator. The above three factors lead to the occurrence of positive phase IOD events. When anomalous westerly dominates over the tropical Indian Ocean, the dynamic processes are reversed, and the negative-phase IOD event occurs.
Resumo:
A global wavenumber-3 dipole SST mode is showed to exist in the Southern Hemisphere subtropical climate variability in austral summer. A positive (negative) phase of the mode is characterized by cool (warm) SST anomalies in the east and warm (cool) SST anomalies in the southwest of the south Indian, Pacific, and Atlantic Oceans, respectively. This coherent dipole structure is largely a response of ocean mixed layer to the atmospheric forcing characterized by migration and modulation of the subtropical high-pressures, in which the latent heat flux play a leading role through wind-induced evaporation, although ocean dynamics may also be crucial in forming SST anomalies attached to the continents. Exploratory analyses suggest that this mode is strongly damped by the negative heat flux feedback, with a persistence time about three months and no spectral peak at interannual to decadal time scales. As the subtropical dipole mode is linearly independent of ENSO and SAM, whether it represents an additional source of climate predictability should be further studied. Citation: Wang, F. (2010), Subtropical dipole mode in the Southern Hemisphere: A global view, Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.
Resumo:
Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society
Resumo:
This paper summarizes the progress of large-scale air-sea interaction studies that has been achieved in China in the four-year period from July 1998 to July 2002, including seven aspects in the area of the air-sea interaction, namely air-sea interaction related to the tropical Pacific Ocean, monsoon-related air-sea interaction, air-sea interaction in the north Pacific Ocean, air-sea interaction in the Indian Ocean, air-sea interactions in the global oceans, field experiments, and oceanic cruise surveys. However more attention has been paid to the first and the second aspects because a large number of papers in the reference literature for preparing and organizing this paper are concentrated in the tropical Pacific Ocean, such as the ENSO process with its climatic effects and dynamics, and the monsoon-related air-sea interaction. The literature also involves various phenomena with their different time and spatial scales such as intraseasonal, annual, interannual, and interdecadal variabilities in the atmosphere/ocean interaction system, reflecting the contemporary themes in the four-year period at the beginning of an era from the post-TOGA to CLIVAR studies. Apparently, it is a difficult task to summarize the great progress in this area, as it is extracted from a large quantity of literature, although the authors tried very hard.
Resumo:
A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.
Resumo:
Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.
Resumo:
Based on analysis of NCEP reanalysis data and SST indices of the recent 50 years, decadal changes of the potential predictability of ENSO and interannual climate anomalies were investigated. Autocorrelation of Nino3 SST anomalies (SSTA) and correlation between atmospheric anomalies fields and Nino3 SSTA exhibit obvious variation in different decades, which indicates that Nino3 SSTA-related potential predictability of ENSO and interannual climate anomalies has significant decadal changes. Time around 1977 is not only a shift point of climate on the interdecadal time scale but also a catastrophe point of potential predictability of ENSO and interannual climate. As a whole, ENSO and the PNA pattern in boreal winter are more predictable in 1980s than in 1960s and 1970s, while the Nino3 SSTA-related potential predictability of the Indian monsoon and the East Asian Monsoon is lower in 1980s than in 1960s and 1970s.
Resumo:
The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.
Resumo:
A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.
Resumo:
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
Resumo:
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.
Resumo:
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated, which show the following results. (1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160 W as its axis and a meridional seesaw pattern with 6-8 degrees N as its transverse axis. The meridional oscillation has a phase lag of about 90 to the zonal oscillation, both oscillations get together to form the El Nino/La Nina cycle, which behaves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12 degrees N. (2) There are two main patterns of wind stress anomalies in the tropical Pacific, of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific, and the abnormal cross- equatorial flow wind stress and its corresponding divergence field, which has a sign opposite to that of the equatorial region, in the off-equator of the tropical North Pacific, and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly. (3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle, which results in the sea level tilting, provides an initial potential energy to the mixed layer water oscillation, and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12 degrees N of the North Pacific basin, therefore determines the amplitude and route for ENSO cycle. The ITCZ anomaly has some effects on the phase transition. (4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific, which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation, which in turn intensifies the oscillation. The coupled system of ocean-atmosphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle. In conclusion, the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12 degrees N. When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation, the oscillation will be stronger or maintain as it is, while when the force is less than the resistance, the oscillation will be weaker, even break.