932 resultados para BOROSILICATE GLASS
Resumo:
Transparent glass ceramics have been prepared in the Ga2S3-GeS2-CsCI pseudoternary system appropriate heat treatment time and temperature. In situ X-ray diffraction at the heat treatment temperature and Cs-133 and Ga-71 solid-state nuclear magnetic resonance have been performed in function of annealing time to understand the crystallization process. Both techniques have evidenced the nucleating agent role played by gallium with the formation of Ga2S3 nanocrystals. on the other hand, cesium is incorporated very much later into the crystallites during the ceramization. Moreover, the addition of CsCl, which is readily integrated into the glassy network, permits us to shift the optical band gap toward shorter wavelength. Thus, new glass ceramics transmitting in the whole visible range up to 11.5 mu m have been Successfully synthesized from the (Ga2S3)(35)-(GeS2)(25)-CsCl40 base glass composition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glass transition temperature of freeze-dried pineapple conditioned by adsorption at various water activities at 25 degreesC was determined by differential scanning calorimetry (DSC). High moisture content samples corresponding to water activities higher than 0.9, obtained by liquid water addition, were also analysed. The DSC traces showed a well-visible shift in baseline at the glass transition temperature (T(g)). Besides, no ice formation was observed until water activity was equal to 0.75. For water activities lower than 0.88, the glass transition curve showed that T(g) decreased with increasing moisture content and the experimental data could be well-correlated by the Gordon-Taylor equation. For higher water activities, this curve exhibited a discontinuity, with suddenly increasing glass transition temperatures approaching a constant value that corresponds to the T(g) of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through melting enthalpy dependence on the sample moisture content.
Resumo:
In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Non-crystalline silica was obtained with different particle sizes. Samples were prepared from soluble sodium silicate (water glass) and sulfuric acid solutions. Dialysis was performed for sodium sulfate elimination. Products were dried in a microwave oven, milled and characterized by X-ray powder diffraction, infrared spectrum and sedigraphic analysis. Products milled for more than 120 minutes showed uniform particle size distribution with average silica particle size of 4.5 mu m.
Resumo:
Syagrus schizophylla (Mart.) Glass. belongs to the Arecaccae family. This palm is native of Brazil and presents great potential for use in gardens and cultivation in pot. Palms species, with relatively few exceptions, can only be propagated from seeds; even so, there are no reports in the literature about the germination of this palm seeds. The seed maturity is a factor that interferes in the success of the germination process. For some species, studies showed that palm seeds germinated better when the fruits were completely ripe (showing full color) and for other, when they were with green coloration. Several species of the Arecaccae family presents physical dormancy of seeds in varied degrees, demanding treatments for improve germination. The objective of this work was to study the effects of maturation and of the scarification on seed germination of S. schizophylla. The experimental design used was a factorial 3 x 2 (3 maturation stadiums: green, half-ripe - yellow and completely ripe - red; and mechanical scarification: with and without), entirely casualized, with four replications of 15 seeds per plot. The seeds (with 32,43% of humidity) were placed in plastic boxes with sand (60% of humidity, placing water according to weight in each three days), under controlled conditions of alternated temperature of 25-35 degrees C, photoperiod of 12 hours. The percentage of germination and the speed germination index (SGI) were evaluated until 79 days. It was observed that, so much for germination percentage as for SGI, there was not significant difference for the interaction among the two factors, maturation stadium and scarification, however, there were significant differences among the maturation stadiums and between seeds scarified or not. The seeds from green fruits presented lower germination percentage and slower germination when compared with seeds from yellow or red fruits; the seeds from yellow or red fruits didn't differ statistically to each other. To seeds scarificated, independently of the maturation stadium, presented germination percentage significantly larger and the germination was significantly faster when compared with the seeds without scarification.
Resumo:
The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Glass ionomer cements (GICs) are currently used for various dental applications such as luting cements or as restorative materials. The calcium fluoro-alumino-silicate system is the basis for degradable glasses used to obtain the GICs. The purpose of the present paper is to add niobium to conventional glass system because according to previous papers niobium addition improves the chemical resistance and the mechanical properties of glasses. Therefore, the GICs prepared from these glasses would result in cements with higher chemical and mechanical resistance. The niobium fluoride powders were prepared using the sol-gel process and were characterized by X-ray diffraction, differential thermal analysis (DTA) and Al-27 and Si-29 MAS NMR. The results obtained by XRD showed that the powders prepared by this method are glass-ceramic. In the DTA curve was detected the presence of T-g and T-c temperatures. The analysis of MAS NMR spectra indicated that the framework of the powders is formed by SiO4 and AlO4 linked tetrahedra which are essential structures to yield the cements. Thus, we concluded that niobium fluoride silicate powders can be used in the preparation of GICs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Glasses with composition 60PbGeO(3)-10PbF(2)-30CdF(2) (mol%) have been obtained in the bulk form with a high stability against crystallization. After doping them with 0.5 mol% of Er3+ or Eu3+ and appropriate heat treatment transparent glass ceramics could be obtained. Electronic spectroscopy, X-ray diffraction and transmission electron microscopy measurements have been made. beta-PbF2: Er3+/Eu3+ Single crystals, 5-10 nm in size, are detected in the otherwise transparent composite medium, the size of the particles and absence of clustering allowing for the increased transparency of the final materials. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.
Resumo:
The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE) prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37 degrees C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.