910 resultados para BLOCKING ELECTRODE
Resumo:
Two commercially available electrode catheters are examined for their suitability in esophageal long-term ECG recordings. Both, electrical sensing characteristics as well as clinical acceptance were investigated in a clinical study including inpatients with cardiovascular diseases. In total, 31 esophageal ECG were obtained in 36 patients. Results showed that esophageal electrodes were well tolerated by the patients. Hemispherical electrodes with higher diameter required more insertion attempts and were associated with increased failure rates as compared to cylindrical electrodes. In contrast, the higher surface area of hemispherical electrodes resulted in significantly higher signal-to-noise ratio. Contact impedance was equal for both electrode types, but esophageal electrodes had lower impedance if compared with skin electrodes.
Resumo:
This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.
Resumo:
Solid oxide fuel cell (SOFC) technology has the potential to be a significant player in our future energy technology repertoire based on its ability to convert chemical energy into electrical energy. Infiltrated SOFCs, in particular, have demonstrated improved performance and at lower cost than traditional SOFCs. An infiltrated electrode comprises porous ceramic scaffolding (typically constructed from the oxygen ion conducting material) that is infiltrated with electron conducting and catalytic particles. Two important SOFC electrode properties are effective conductivity and three phase boundary density (TPB). Researchers study these electrode properties separately, and fail to recognize them as competing properties. This thesis aims to (1) develop a method to model the TPB density and use it to determine the effect of porosity, scaffolding particle size, and pore former size on TPB density as well as to (2) compare the effect of porosity, scaffolding particle size, and pore former size on TPB density and effective conductivity to determine a desired set of parameters for infiltrated SOFC electrode performance. A computational model was used to study the effect of microstructure parameters on the effective conductivity and TPB density of the infiltrated SOFC electrode. From this study, effective conductivity and TPB density are determined to be competing properties of SOFC electrodes. Increased porosity, scaffolding particle size, and pore former particle size increase the effective conductivity for a given infiltrate loading above percolation threshold. Increased scaffolding particle size and pore former size ratio, however, decreases the TPB density. The maximum TPB density is achievable between porosities of 45% and 60%. The effect of microstructure parameters are more prominent at low loading with scaffolding particle size being the most significant factor and pore former size ratio being the least significant factor.
Resumo:
Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.
Resumo:
Neutralizing antibody (nAb) responses to lymphocytic choriomeningitis virus (LCMV) in mice and immunodeficiency virus and hepatitis C virus in humans are usually weak and slow to develop. This may be the result of structural properties of the surface glycoprotein, a low frequency of B cells with neutralizing specificity, and the necessity of prolonged affinity maturation of specific nAbs. In this study, we show that during LCMV infection, CD27 signaling on CD4+ T cells enhances the secretion of interferon-gamma and tumor necrosis factor-alpha. These inflammatory cytokines lead to the destruction of splenic architecture and immunodeficiency with reduced and delayed virus-specific nAb responses. Consequently, infection with the otherwise persistent LCMV strain Docile was eliminated after CD27 signaling was blocked. Our data provide a novel mechanism by which LCMV avoids nAb responses and suggest that blocking the CD27-CD70 interaction may be an attractive strategy to prevent chronic viral infection.