912 resultados para BEAM EQUATION
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
INTRODUCTION Conventional 2-dimensional radiography uses defined criteria for outcome assessment of apical surgery. However, these radiographic healing criteria are not applicable for 3-dimensional radiography. The present study evaluated the repeatability and reproducibility of new cone-beam computed tomographic (CBCT)-based healing criteria for the judgment of periapical healing 1 year after apical surgery. METHODS CBCT scans taken 1 year after apical surgery (61 roots of 54 teeth in 54 patients, mean age = 54.4 years) were evaluated by 3 blinded and calibrated observers using 4 different indices. Reformatted buccolingual CBCT sections through the longitudinal axis of the treated roots were analyzed. Radiographic healing was assessed at the resection plane (R index), within the apical area (A index), of the cortical plate (C index), and regarding a combined apical-cortical area (B index). All readings were performed twice to calculate the intraobserver agreement (repeatability). Second-time readings were used for analyzing the interobserver agreement (reproducibility). Various statistical tests (Cohen, kappa, Fisher, and Spearman) were performed to measure the intra- and interobserver concurrence, the variability of score ratios, and the correlation of indices. RESULTS For all indices, the rates of identical first- and second-time scores were always higher than 80% (intraobserver Cohen κ values ranging from 0.793 to 0.963). The B index (94.0%) showed the highest intraobserver agreement. Regarding interobserver agreement, the highest rate was found for the B index (72.1%). The Fleiss' κ values for R and B indices exhibited substantial agreement (0.626 and 0.717, respectively), whereas the values for A and C indices showed moderate agreement (0.561 and 0.573, respectively). The Spearman correlation coefficients for R, A, C, and B indices all exhibited a moderate to very strong correlation with the highest correlation found between C and B indices (rs = 0.8069). CONCLUSIONS All indices showed an excellent intraobserver agreement (repeatability). With regard to interobserver agreement (reproducibility), the B index (healing of apical and cortical defects combined) and the R index (healing on the resection plane) showed substantial congruence and thus are to be recommended in future studies when using buccolingual CBCT sections for radiographic outcome assessment of apical surgery.
Resumo:
OBJECTIVE The improvement in diagnostic accuracy and optimization of treatment planning in periodontology through the use of three-dimensional imaging with cone beam computed tomography (CBCT) is discussed controversially in the literature. The objective was to identify the best available external evidence for the indications of CBCT for periodontal diagnosis and treatment planning in specific clinical situations. DATA SOURCES A systematic literature search was performed for articles published by 2 March 2015 using electronic databases and hand search. Two reviewers performed the study selection, data collection, and validity assessment. PICO and PRISMA criteria were applied. From the combined search, seven studies were finally included. CONCLUSION The case series were published from the years 2009 to 2014. Five of the included publications refer to maxillary and/or mandibular molars and two to aspects related to vertical bony defects. Two studies show a high accuracy of CBCT in detecting intrabony defect morphology when compared to periapical radiographs. Particularly, in maxillary molars, CBCT provides high accuracy for detecting furcation involvement and morphology of surrounding periodontal tissues. CBCT has demonstrated advantages, when more invasive treatment approaches were considered in terms of decision making and cost benefit. Within their limits, the available data suggest that CBCT may improve diagnostic accuracy and optimize treatment planning in periodontal defects, particularly in maxillary molars with furcation involvement, and that the higher irradiation doses and cost-benefit ratio should be carefully analyzed before using CBCT for periodontal diagnosis and treatment planning.
Resumo:
INTRODUCTION Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47 patients) were measured before and after apical surgery. Data were collected relative to the cementoenamel junction (CEJ) as well as to the crestal bone level (CBL). One observer took all measurements twice (to calculate the intraobserver variability), and the means were used for further analysis. The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS The mean length of root-end resection was 3.58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P < .05). There was also a statistically significant difference comparing mandibular and maxillary teeth (P < .05), but not for incisors/canines versus premolars/molars (P = .125). The mean preoperative and postoperative RCRs (relative to CEJ) were 1.83 and 1.35, respectively (P < .001). With regard to the CBL reference, the mean preoperative and postoperative RCRs were 1.08 and 0.71 (CBL), respectively (P < .001). The calculated changes of RCR after apical surgery were 24.8% relative to CEJ and 33.3% relative to CBL (P < .001). Across the different tooth groups, the mean RCR was not significantly different (P = .244 for CEJ and 0.114 for CBL). CONCLUSIONS This CBCT-based study demonstrated that the RCR is significantly changed after root-end resection in apical surgery irrespective of the clinical (CBL) or anatomic (CEJ) reference levels. The lowest, and thus clinically most critical, postoperative RCR was observed in maxillary incisors. Future clinical studies need to show the impact of resection length and RCR changes on the outcome of apical surgery.
Resumo:
PURPOSE To analyze the indications and frequency for three-dimensional (3D) imaging for implant treatment planning in a pool of patients referred to a specialty clinic over a 3-year period. MATERIALS AND METHODS All patients who received dental implants between 2008 and 2010 at the Department of Oral Surgery and Stomatology at the University of Bern were included in the study. The influence of age, gender, and time of treatment (2008 to 2010) on the frequency of use of two-dimensional (2D) radiographic imaging modalities alone or in combination with 3D cone beam computed tomography (CBCT) scans was analyzed. Furthermore, the influence of the indication, location, and need for bone augmentation on the frequency of use of 2D imaging modalities alone or in combination with CBCT was evaluated. RESULTS In all, 1,568 patients (792 women and 776 men) received 2,279 implants. Overall, 633 patients (40.4%) were analyzed with 2D imaging procedures alone. CBCT was performed in 935 patients (59.6%). There was a statistically significant increase in CBCT between 2008 and 2010. Patients older than 55 years received a CBCT scan in addition to 2D radiographic imaging statistically significantly more often. Additional 3D imaging was most frequently performed in the posterior maxilla, whereas 2D radiographs alone exhibited the highest frequency in the anterior mandible. The combination of 2D with CBCT was used predominantly for implant placement with simultaneous or staged guided bone regeneration or sinus elevation. CONCLUSION Based on these findings from a specialty clinic, the use of additional CBCT imaging for implant treatment planning is influenced by the indication, location, local anatomy (including the need for bone augmentation), and the age of the patient.
Resumo:
PURPOSE The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. METHODS AND MATERIALS Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. RESULTS A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). CONCLUSIONS The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
Resumo:
The 1937 paper of Gronwall which concerns an alternative form for the Schrodinger Equation of the 2-electron Helium problem is re-derived in a (hopefully) transparent (possibly pedestrian) manner.
Resumo:
The Frobenius solution to Legendre/s equation is developed in detail as is Rodrigue's formula, which is employed to normalize Legendre polynomials.
Resumo:
The continued fraction method for solving differential equations is illustrated using three famous differential equations used in quantum chemistry.