963 resultados para Automobiles, Racing -- Aerodynamics
Resumo:
En esta tesis se ha analizado la influencia que tienen ciertas imperfecciones en el borde de ataque de un perfil aerodinmico sobre el comportamiento aerodinmico general del mismo, centrndose fundamentalmente en la influencia sobre el coeficiente de sustentacin mxima, coeficiente de resistencia y sobre la eficiencia aerodinmica del perfil, es decir sobre la relacin entre la sustentacin y la resistencia aerodinmicas. Tambin se ha analizado su influencia en otros aspectos, como la entrada en prdida, ngulo de ataque de sustentacin mxima, ngulo de ataque de eficiencia mxima, coeficiente de momento aerodinmico y posicin del centro aerodinmico. Estos defectos de forma en el borde de ataque pueden aparecer en algunos procesos de fabricacin de determinados elementos aerodinmicos, como pueden ser las alas de pequeos aviones no tripulados o las palas de aeroturbina. Los perfiles se ha estudiado a bajos nmeros de Reynolds debido a su uso reciente en una amplia gama de aplicaciones, desde vehculos areos no tripulados (UAV) hasta palas de aeroturbina de baja potencia, e incluso debido a su potencial utilizacin en aeronaves diseadas para volar en atmsferas de baja densidad. El objeto de estudio de esta tesis no ha sido analizado en profundidad en la literatura cientfica, aunque s que se ha estudiado por varios autores el comportamiento de perfiles a bajos nmeros de Reynolds, con ciertas protuberancias sobre su superficie o tambin con formacin de hielo en el borde de ataque. Para la realizacin de este estudio se han analizado perfiles de distinto tipo, perfiles simtricos y con curvatura, perfiles laminares, y todos ellos con igual o distinto espesor, con el objeto de obtener y comparar la influencia del fenmeno estudiado sobre cada tipo de perfil y as analizar su grado de sensibilidad a estas imperfecciones en la geometra del borde de ataque. Este trabajo ha sido realizado experimentalmente utilizando una tnel aerodinmico diseado especficamente a tal efecto, as como una balanza electrnica para medir las fuerzas y los momentos sobre el perfil, y un escner de presiones para medir la distribucin de presiones sobre la superficie de los perfiles en determinados casos de inters. La finalidad de este estudio est orientada al establecimiento de criterios para cuantificar la influencia en la aerodinmica del perfil que tiene el hecho de que el borde de ataque presente una discontinuidad geomtrica, con el objeto de poder establecer los lmites de aceptacin o rechazo de estas piezas en el momento de ser fabricadas. Del anlisis de los casos estudiados se puede concluir que segn aumenta el tamao de la imperfeccin del borde de ataque, la sustentacin aerodinmica mxima en general disminuye, al igual que la eficiencia aerodinmica mxima, pues la resistencia aerodinmica aumenta. Sin embargo, en algunos casos, para pequeos defectos se produce un efecto contrario. La sustentacin mxima aumenta apreciablemente sin apenas prdida de eficiencia aerodinmica mxima. ABSTRACT The aim of this thesis is to analyze the effects of leading edge imperfections on the aerodynamic characteristics of airfoils at low Reynolds numbers. The leading edge imperfection here considered being a slight displacement of half airfoil with respect to the other. This study has focus on its influence on the airfoils aerodynamic lift, drag and on the aerodynamic efficiency of the airfoil, that is, the relationship between the aerodynamic lift and drag. It has also been studied how this fact may alter some other aerodynamic aspects of airfoils, such as stall, angle of attack of maximum lift, angle of maximum efficiency, aerodynamic moment coefficient and aerodynamic center position. These imperfections in the leading edge may appear in some manufacturing processes of certain aerodynamic elements, such as unmanned aircraft wings or wind turbine blades. The study has focused on the analysis of the behavior at low Reynolds numbers due to recent use of low Reynolds numbers airfoils in a wide range of applications, from unmanned aerial vehicles (UAV) to low power wind turbine blades, or even due to their potential use in aircraft designed to fly in low density atmospheres as the one existing in Mars. This phenomenon has not been deeply analyzed in the literature, although several authors have discussed on airfoils at low Reynolds number, with leading edge protuberances or airfoils with ice accretions. Various types of airfoils have been analyzed, laminar and non-laminar, symmetric and curved airfoils, and airfoils with different thickness, in order to compare the degree of influence of the phenomenon studied on each airfoil type and thus, to estimate the degree of sensitivity to the anomaly geometry. The study was carried out experimentally using a test chamber designed specifically for this purpose, as well as an electronic balance to measure the forces and moments on the airfoil, and a pressure scanner to measure distribution of pressures in certain cases. The main purpose of this research is to establish a criteria for quantifying the influence that a slight displacement of half aerofoil with respect to the other has in the degradation of aerodynamics characteristics, aiming at establishing the acceptance limits for these pieces when they are manufactured, according to the type of airfoil used. Based on the results obtained from the analysis of the cases under study it can be concluded that displacements, within the range of study, decreases maximum aerodynamic lift, but the aerodynamic drag increases, and consequently there is a reduction of aerodynamic efficiency. However, in some cases, for small defects opposite effect occurs. The maximum lift increases significantly with little loss of maximum aerodynamic efficiency.
Resumo:
The main objective of ventilation systems in tunnels is to reach the highest possible safety level both in service and fire situation; being the fire one, the most relevant when designing the system. When designing a longitudinal ventilation system, the methodology to evaluate the capacity of the system is similar both in service and fire situation, with the exception of the chimney effect and the phenomena of thermal transfer which is responsible or the changes in the density of the air. When facing the dimensioning task for longitudinal ventilated tunnels, although similar methodologies are used in different countries, specific hypothesis (aerodynamic, thermal properties, traffic) even if discussed in the literature or current practice, are not usually detailed in the regulations or recommendations. The aim of this paper is to propose a probabilistic approach to the problem which would allow the designer, and the tunnel owner, to understand the uncertainty and sensibility adopted in the results and, eventually, identify possible ways of optimizing the ventilation solution to be adopted.
Resumo:
Between 2003 and 2007 an urban network or road tunnels with a total constructed tubes length of 45 km was built in the city of Madrid. This amazing engineering work, known as "Calle 30 Project" counted with different kinds of tunnel typologies and ventilation systems. Due to the length of the tunnels and the impact of the work itself, the tunnels were endowed with a great variety of installations to provide the maximum levels of safety both for users and the infrastructure includieng, in some parts of the tunnel, fixed fire fighting system based on water mist. Whithin this framework a large-scale programme of fire tests was planned to study different aspects related to fire safety in the tunnels including the phenomena of the interaction between ventilation and extinguishing system. In addition, these large scale fire tests allowed fire brigades of the city of Madrid an opportunity to define operational procedures for specific fire fighting in tunnels and evaluate the possibilities of fixed fire fighting systems. The tests were carried out in the Center of Experimentation "San pedro of Anes" which includes a 600 m tunnel with a removable false ceiling for reproducing different ceiling heights and ventilation conditions (transverse and longitudinal ones). Interesting conclusions on the interaction of ventilation and water mist systems were obtained but also on other aspects including performance of water mist system in terms of reduction of gas temperatures or visibility conditions. This paper presents a description of the test's programme carried out and some previous results obtained.
Resumo:
The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotors geometry, climatic conditions during calibration, and anemometers ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotors geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometers output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.
Resumo:
En este proyecto de final de carrera se detalla el proceso de diseo, fabricacin, montaje y ajuste de un dispositivo electrnico que sirva como sistema de control de traccin de un vehculo y que acoplaremos sobre un monoplaza de carreras que participa en la competicin Formula SAE. La Formula SAE (Society of Automotive Engineers - Sociedad de Ingenieros de Automocin), es una competicin de coches de carreras monoplaza a nivel universitario que promueve el desarrollo de la ingeniera aplicada a la automocin. Se pretende que este libro sirva de gua para el correcto manejo y desempeo del sistema fabricado. Adems se ha pretendido que su lectura resulte fcil y comprensible para que la persona que lea este libro sea capaz de entender el sistema realizado para as poderlo mejorar. Gracias a la colaboracin entre la Escuela Tcnica Superior de Ingeniera y Sistemas de Telecomunicacin (ETSIST) de la Universidad Politcnica de Madrid (UPM), la Escuela de Ingenieros Industriales de esta misma Universidad (ETSII) y el Instituto Universitario de Investigacin del Automvil (INSIA), se sientan las bases de una plataforma docente en la cual se posibilita la formacin y desarrollo de un vehculo tipo formula que participa en la ya mencionada competicin Formula SAE. Para ello, se formo en el 2003 el equipo UPMRacing, primer representante espaol en el evento. El equipo se compone de ms de 50 alumnos de la UPM y del Mster de Ingeniera en Automocin del INSIA. Es por tanto, en el vehculo fabricado por el equipo UPMRacing, en el que se pretende instalar este sistema de control de traccin. El control de traccin es un sistema de seguridad del automvil diseado para prevenir la perdida de adherencia cuando alguna rueda presenta deslizamiento, bien porque el conductor se excede en la aceleracin o bien porque el firme este resbaladizo. La unidad de procesamiento del sistema de control de traccin fabricado lee la velocidad de cada rueda del vehculo mediante unos sensores y determina si existe deslizamiento, en tal caso, manda una seal a la centralita para disminuir la potencia hasta que el deslizamiento disminuya a unos valores controlados. El sistema cuenta con un control remoto que sirve como interfaz para que el piloto pueda manejarlo. Por ultimo, el dispositivo es capaz de conectarse a un bus de comunicaciones CAN para configurar ciertos parmetros. El objetivo del sistema es, bsicamente, hacer que el coche no derrape en aceleraciones fuertes; concretamente en las salidas desde parado y al tomar una curva, aumentando as la velocidad en circuito y la seguridad del piloto. ABSTRACT. The purpose of this project is to describe the design, manufacture, assembly and adjustment processes of an electronic device acting as the traction control system (TCS) of a vehicle, that we will attach to a single-seater competition formula SAE car. The Formula SAE (Society of Automotive Engineers) is a graduate-level singleseater racing car competition promoting the development of automotive applied engineering. We also intend this work to serve as a technical user guide of the manufactured system. It is drafted clearly and concisely so that it will be easy for all those to whom it is addressed to understand and subject to further improvements. The close partnership among the Escuela Tcnica Superior de Ingeniera y Sistemas de Telecomunicacin (ETSIST), Escuela de Ingenieros Industriales (ETSII) of Universidad Politcnica de Madrid (UPM), and the Instituto Universitario de Investigacin del Automvil (INSIA), lays the foundation of a teaching platform enabling the training and development of a single-seater racing car taking part in the already mentioned Formula SAE competition. In this respect, UPMRacing team was created back in 2003, first spanish representative in this event. The team consists of more than 50 students of the UPM and of INSIA Master in Automotive Engineering. It is precisely the vehicle manufactured by UPMRacing team where we intend to install our TCS. TCS is an automotive safety system designed to prevent loss of traction when one wheel has slip, either because the driver exceeds the acceleration or because the firm is slippery. The devices central processing unit is able to detect the speed of each wheel of the vehicle via special sensors and to determine wheel slip. If this is the case, the system sends a signal to the ECU of the vehicle to reduce the power until the slip is also diminished to controlled values. The device has a remote control that serves as an interface for the pilot to handle it. Lastly, the device is able to connect to a communication bus system CAN to set up certain parameters. The system objective is to prevent skidding under strong acceleration conditions: standing-start from the starting grid or driving into a curve, increasing the speed in circuit and pilots safety.
Resumo:
A series of numerical simulations of the flow over a forest stand have been conducted using two different turbulence closure models along with various levels of canopy morphology data. Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements from a wind tunnel study using one hundred architectural model trees, the porosities of which have been assessed using a photographic technique. It has been found that an accurate assessment of the porosity of the canopy, and specifically the variability with height, improves simulation quality regardless of the turbulence closure model used or the level of canopy geometry included. The observed flow field and recovery of the wake is in line with characteristic canopy flows published in the literature and it was found that the shear stress transport turbulence model was best able to capture this detail numerically.
Resumo:
The optimization of the nose shape of a high-speed train entering a tunnel has been performed using genetic algorithms(GA).This optimization method requires the parameterization of each optimal candidate as a design vector.The geometrical parameterization of the nose has been defined using three design variables that include the most characteristic geometrical factors affecting the compression wave generated at the entry of the train and the aerodynamic drag of the train.
Resumo:
Dado que es difcil imaginar en el futuro una sociedad moderna donde la energa no juegue un papel fundamental y puesto que numerosos estudios han demostrado que el ritmo actual de consumo de combustibles es insostenible y perjudicial para la vida del planeta, es fundamental concienciar a la humanidad de que un cambio de tendencia no solo es necesario sino que es imperativo. No se trata de erradicar por completo el uso de fuentes de carcter fsil, pues en muchos pases es su principal o incluso su nica forma de obtener energa, sino de avanzar hacia un equilibrio en la generacin, para lo que ser vital permitir el desarrollo de energas limpias, aumentar la eficiencia de la tecnologa y reducir el consumo. En este contexto se ha decidido construir un rotor elico de pequeas dimensiones que servir como herramienta de estudio para alumnos de ingeniera. Para disear la turbina se ha desarrollado un modelo de programacin informtica que, basado en conceptos aerodinmicos, permite calcular la geometra de las palas en funcin de unas condiciones iniciales, estimar la potencia del rotor y obtener sus curvas de funcionamiento. Uno de los principales problemas de la tecnologa elica es su alta variabilidad, por ello se ha implementado un sistema de regulacin de velocidad; se trata de un mecanismo que acta sobre la orientacin de las palas y permite regular la potencia de un generador elctrico acoplado al rotor. Los aerogeneradores actuales recurren a este tipo de sistemas para tratar de suavizar los desequilibrios de potencia que puedan producir las rfagas de viento. Se ha recurrido a un software de diseo asistido por ordenador para dibujar tanto el rotor como el sistema de regulacin de velocidad. La mayora de las piezas del rotor se han fabricado con ayuda de una impresora 3D, otras, las metlicas, se han tallado en aluminio mediante un torno. Aunque el programa informtico que realiza los clculos aerodinmicos devuelve datos tericos a cerca del comportamiento del rotor, se ha credo necesario probar el molino mediante ensayos de laboratorio a fin de obtener un resultado ms realista.Abstract Given that its difficult to imagine any modern society in the future where energy does not play a crucial role, and as many studies have shown that the actual rate of fuel consumption is unsustainable and harmful to life on the planet, it is essential to raise mankinds awareness that a change in the current trend is not only necessary, but is also imperative. It is not a question of completely eradicating the use of fossil fuels, as in many countries they are the main or even the only way of generating energy, but rather working towards a balance in generation. To do so it is vital to encourage the development of clean energies, increase technological efficiency and reduce consumption. In view of this we have decided to build a small scale wind turbine rotor which can be used as a study tool for engineering students. To design the turbine a software programme was developed based on aerodynamic concepts, which allows us to calculate the geometry of the blades depending on certain initial conditions, estimate the power of the turbine, and obtain performance curves. One of the main issues with wind technology is its high variability, and therefore we implemented a speed regulation system consisting of a mechanism that varies the orientation of the blades and thus allows us to regulate the power of an electric generator attached to the turbine. Current wind powered generators use this type of system to try to smooth out spikes in power that may be caused by gusts of wind. We have used CAD software to design both the turbine itself and the speed regulation system. Most of the turbine parts have been manufactured with the aid of a 3D printer, while the other metallic parts have been turned on made a lathe in aluminum. Although the software programme which calculates the aerodynamics provide us theoretical data about the operation of the rotor. We consider it necessary to test the wind turbine in a lab to obtain more accurate results.
Resumo:
The paper provides a method applicable for the determination of flight loads for maneuvering aircraft, in which aerodynamic loads are calculated based on doublet lattice method, which contains three primary steps. Firstly, non-dimensional stability and control derivative coefficients are obtained through solving unsteady aerodynamics in subsonic flow based on a doublet lattice technical. These stability and control derivative coefficients are used in second step. Secondly, the simulation of aircraft dynamic maneuvers is completed utilizing fourth order Runge-Kutta method to solve motion equations in different maneuvers to gain response parameters of aircraft due to the motion of control surfaces. Finally, the response results calculated in the second step are introduced to the calculation of aerodynamic loads. Thus, total loads and loads distribution on different components of aircraft are obtained. According to the above method, abrupt pitching maneuvers, rolling maneuvers and yawing maneuvers are investigated respectively.
Resumo:
The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients.
Resumo:
The cup anemometer rotor aerodynamics is analytically studied based on the aerodynamics of a single cup. The effect of the rotation on the aerodynamic force is included in the analytical model, together with the displacement of the aerodynamic center during one turn of the cup. The model can be fitted to the testing results, indicating the presence of both the aforementioned effects
Resumo:
Las futuras misiones para misiles aire-aire operando dentro de la atmsfera requieren la interceptacin de blancos a mayores velocidades y ms maniobrables, incluyendo los esperados vehculos areos de combate no tripulados. La intercepcin tiene que lograrse desde cualquier ngulo de lanzamiento. Una de las principales discusiones en la tecnologa de misiles en la actualidad es cmo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a travs de mejoras en los mtodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultneamente, al proponer un diseo integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinmico simultneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseo integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando nicamente control aerodinmico. El diseo propuesto se compara favorablemente con esquemas ms tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrar cmo la introduccin del doble mando, donde tanto el canard como las aletas de cola son mviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere slo introducir dos servos adicionales para accionar los canards tambin en guiada y cabeceo. La seccin de cola ser responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicacin aadida es que los vrtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus caractersticas de control. Como un primer aporte, se ha desarrollado un modelo analtico completo para la aerodinmica no lineal de un misil con doble control, incluyendo la caracterizacin de este efecto de acoplamiento aerodinmico. Hay dos modos de funcionamiento en picado y guiada para un misil de doble mando: desviacin y opuesto. En modo desviacin, los controles actan en la misma direccin, generando un cambio inmediato en la sustentacin y produciendo un movimiento de translacin en el misil. La respuesta es rpida, pero en el modo desviacin los misiles con doble control pueden tener dificultades para alcanzar grandes ngulos de ataque y altas aceleraciones laterales. Cuando los controles actan en direcciones opuestas, el misil rota y el ngulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinmico completo, es posible obtener una parametrizacin dependiente de los estados de la dinmica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los lmites aerodinmicos o mecnicos del misil. Una segunda contribucin de la tesis es el desarrollo de un autopiloto con mltiples entradas de control y que integra la aerodinmica no lineal, controlando los tres canales de picado, guiada y cabeceo de forma simultnea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integracin mediante la resolucin de una ecuacin de Riccati de orden 21x21. Las ganancias obtenidas son sub-ptimas, debido a que una solucin completa de la ecuacin de Hamilton-Jacobi-Bellman no puede obtenerse de manera prctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimizacin, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentacin directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mnima caracterstica de la cola. En esta Tesis se consideran dos diseos para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximacin de Doble-Lazo, el autopiloto se sita dentro de un bucle interior y se disea independientemente del guiado, que conforma el bucle ms exterior del control. Esta estructura asume que existe separacin espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos caractersticos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado ptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptacin, cuando se lanza cerca del curso de colisin, se consigue desde cualquier ngulo alrededor del blanco. Para el misil de doble mando, la estrategia ptima resulta en utilizar el modo de control opuesto en la aproximacin al blanco y utilizar el modo de desviacin justo antes del impacto. Sin embargo la lgica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisin. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleracin lateral, y no tiene control sobre su aceleracin axial, a no ser que incorpore un motor de empuje regulable. La hiptesis de separacin mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinmica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un nico bucle, la informacin de los estados del misil est disponible para el clculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribucin de la Tesis es la resolucin de este segundo diseo, la integracin no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiada. Las simplificaciones que se tomaron tambin causan que el misil se deslice alrededor del blanco y no consiga la intercepcin. En nuestra aproximacin el problema se plantea en ejes inerciales y se recurre a la dinmica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinmica de corto periodo del misil, porque se construye incluyendo de modo explcito la velocidad dentro del bucle de optimizacin. La formulacin resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el clculo del modelo en Doble-bucle. Un tpico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posicin del misil y saturan el controlador, provocando la prdida del misil. Este problema se ha tratado aqu con un controlador aumentado previo al bucle de optimizacin, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemtico resultante es muy complejo. El problema ptimo para tiempo finito resulta en una ecuacin diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introduccin de una matriz de transicin, este problema se transforma en una ecuacin diferencial de Lyapunov que puede resolverse mediante mtodos numricos. La solucin resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solucin aproximada basada en la solucin de una ecuacin algebraica de Riccati para cada paso de integracin. Los resultados que se han obtenido demuestran, a travs de anlisis numricos en distintos escenarios, que la solucin integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsin, consiguiendo la interceptacin del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y adems requiere un orden menos de magnitud en la cantidad de clculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es ms robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el ncleo de optimizacin en el IGA es independiente de la maniobra del blanco. La estimacin de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisin de la solucin de Doble-Bucle. Finalmente, como una cuarta contribucin, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, slo con control aerodinmico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones tcnicamente ms complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Arnguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, divert and opposite modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an -shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.
Resumo:
El programa Europeo HORIZON2020 en Futuras Ciudades Inteligentes establece como objetivo que el 20% de la energa elctrica sea generada a partir de fuentes renovables. Este objetivo implica la necesidad de potenciar la generacin de energa elica en todos los mbitos. La energa elica reduce drsticamente las emisiones de gases de efecto invernadero y evita los riesgos geo-polticos asociados al suministro e infraestructuras energticas, as como la dependencia energtica de otras regiones. Adems, la generacin de energa distribuida (generacin en el punto de consumo) presenta significativas ventajas en trminos de elevada eficiencia energtica y estimulacin de la economa. El sector de la edificacin representa el 40% del consumo energtico total de la Unin Europea. La reduccin del consumo energtico en este rea es, por tanto, una prioridad de acuerdo con los objetivos "20-20-20" en eficiencia energtica. La Directiva 2010/31/EU del Parlamento Europeo y del Consejo de 19 de mayo de 2010 sobre el comportamiento energtico de edificaciones contempla la instalacin de sistemas de suministro energtico a partir de fuentes renovables en las edificaciones de nuevo diseo. Actualmente existe una escasez de conocimiento cientfico y tecnolgico acerca de la geometra ptima de las edificaciones para la explotacin de la energa elica en entornos urbanos. El campo tecnolgico de estudio de la presente Tesis Doctoral es la generacin de energa elica en entornos urbanos. Especficamente, la optimization de la geometra de las cubiertas de edificaciones desde el punto de vista de la explotacin del recurso energtico elico. Debido a que el flujo del viento alrededor de las edificaciones es exhaustivamente investigado en esta Tesis empleando herramientas de simulacin numrica, la mecnica de fluidos computacional (CFD en ingls) y la aerodinmica de edificaciones son los campos cientficos de estudio. El objetivo central de esta Tesis Doctoral es obtener una geometra de altas prestaciones (u ptima) para la explotacin de la energa elica en cubiertas de edificaciones de gran altura. Este objetivo es alcanzado mediante un anlisis exhaustivo de la influencia de la forma de la cubierta del edificio en el flujo del viento desde el punto de vista de la explotacin energtica del recurso elico empleando herramientas de simulacin numrica (CFD). Adicionalmente, la geometra de la edificacin convencional (edificio prismtico) es estudiada, y el posicionamiento adecuado para los diferentes tipos de aerogeneradores es propuesto. La compatibilidad entre el aprovechamiento de las energas solar fotovoltaica y elica tambin es analizado en este tipo de edificaciones. La investigacin prosigue con la optimizacin de la geometra de la cubierta. La metodologa con la que se obtiene la geometra ptima consta de las siguientes etapas: - Verificacin de los resultados de las geometras previamente estudiadas en la literatura. Las geometras bsicas que se someten a examen son: cubierta plana, a dos aguas, inclinada, abovedada y esfrica. - Anlisis de la influencia de la forma de las aristas de la cubierta sobre el flujo del viento. Esta tarea se lleva a cabo mediante la comparacin de los resultados obtenidos para la arista convencional (esquina sencilla) con un parapeto, un voladizo y una esquina curva. - Anlisis del acoplamiento entre la cubierta y los cerramientos verticales (paredes) mediante la comparacin entre diferentes variaciones de una cubierta esfrica en una edificacin de gran altura: cubierta esfrica estudiada en la literatura, cubierta esfrica integrada geomtricamente con las paredes (planta cuadrada en el suelo) y una cubierta esfrica acoplada a una pared cilindrica. El comportamiento del flujo sobre la cubierta es estudiado tambin considerando la posibilidad de la variacin en la direccin del viento incidente. - Anlisis del efecto de las proporciones geomtricas del edificio sobre el flujo en la cubierta. - Anlisis del efecto de la presencia de edificaciones circundantes sobre el flujo del viento en la cubierta del edificio objetivo. Las contribuciones de la presente Tesis Doctoral pueden resumirse en: - Se demuestra que los modelos de turbulencia RANS obtienen mejores resultados para la simulacin del viento alrededor de edificaciones empleando los coeficientes propuestos por Crespo y los propuestos por Bechmann y Srensen que empleando los coeficientes estndar. - Se demuestra que la estimacin de la energa cintica turbulenta del flujo empleando modelos de turbulencia RANS puede ser validada manteniendo el enfoque en la cubierta de la edificacin. - Se presenta una nueva modificacin del modelo de turbulencia Durbin k e que reproduce mejor la distancia de recirculacin del flujo de acuerdo con los resultados experimentales. - Se demuestra una relacin lineal entre la distancia de recirculacin en una cubierta plana y el factor constante involucrado en el clculo de la escala de tiempo de la velocidad turbulenta. Este resultado puede ser empleado por la comunidad cientfica para la mejora del modelado de la turbulencia en diversas herramientas computacionales (OpenFOAM, Fluent, CFX, etc.). - La compatibilidad entre las energas solar fotovoltaica y elica en cubiertas de edificaciones es analizada. Se demuestra que la presencia de los mdulos solares provoca un descenso en la intensidad de turbulencia. - Se demuestran conflictos en el cambio de escala entre simulaciones de edificaciones a escala real y simulaciones de modelos a escala reducida (tnel de viento). Se demuestra que para respetar las limitaciones de similitud (nmero de Reynolds) son necesarias mediciones en edificaciones a escala real o experimentos en tneles de viento empleando agua como fluido, especialmente cuando se trata con geometras complejas, como es el caso de los mdulos solares. - Se determina el posicionamiento ms adecuado para los diferentes tipos de aerogeneradores tomando en consideracin la velocidad e intensidad de turbulencia del flujo. El posicionamiento de aerogeneradores es investigado en las geometras de cubierta ms habituales (plana, a dos aguas, inclinada, abovedada y esfrica). - Las formas de aristas ms habituales (esquina, parapeto, voladizo y curva) son analizadas, as como su efecto sobre el flujo del viento en la cubierta de un edificio de gran altura desde el punto de vista del aprovechamiento elico. - Se propone una geometra ptima (o de altas prestaciones) para el aprovechamiento de la energa elica urbana. Esta optimizacin incluye: verificacin de las geometras estudiadas en el estado del arte, anlisis de la influencia de las aristas de la cubierta en el flujo del viento, estudio del acoplamiento entre la cubierta y las paredes, anlisis de sensibilidad del grosor de la cubierta, exploracin de la influencia de las proporciones geomtricas de la cubierta y el edificio, e investigacin del efecto de las edificaciones circundantes (considerando diferentes alturas de los alrededores) sobre el flujo del viento en la cubierta del edificio objetivo. Las investigaciones comprenden el anlisis de la velocidad, la energa cintica turbulenta y la intensidad de turbulencia en todos los casos. ABSTRACT The HORIZON2020 European program in Future Smart Cities aims to have 20% of electricity produced by renewable sources. This goal implies the necessity to enhance the wind energy generation, both with large and small wind turbines. Wind energy drastically reduces carbon emissions and avoids geo-political risks associated with supply and infrastructure constraints, as well as energy dependence from other regions. Additionally, distributed energy generation (generation at the consumption site) offers significant benefits in terms of high energy efficiency and stimulation of the economy. The buildings sector represents 40% of the European Union total energy consumption. Reducing energy consumption in this area is therefore a priority under the "20-20-20" objectives on energy efficiency. The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings aims to consider the installation of renewable energy supply systems in new designed buildings. Nowadays, there is a lack of knowledge about the optimum building shape for urban wind energy exploitation. The technological field of study of the present Thesis is the wind energy generation in urban environments. Specifically, the improvement of the building-roof shape with a focus on the wind energy resource exploitation. Since the wind flow around buildings is exhaustively investigated in this Thesis using numerical simulation tools, both computational fluid dynamics (CFD) and building aerodynamics are the scientific fields of study. The main objective of this Thesis is to obtain an improved (or optimum) shape of a high-rise building for the wind energy exploitation on the roof. To achieve this objective, an analysis of the influence of the building shape on the behaviour of the wind flow on the roof from the point of view of the wind energy exploitation is carried out using numerical simulation tools (CFD). Additionally, the conventional building shape (prismatic) is analysed, and the adequate positions for different kinds of wind turbines are proposed. The compatibility of both photovoltaic-solar and wind energies is also analysed for this kind of buildings. The investigation continues with the buildingroof optimization. The methodology for obtaining the optimum high-rise building roof shape involves the following stages: - Verification of the results of previous building-roof shapes studied in the literature. The basic shapes that are compared are: flat, pitched, shed, vaulted and spheric. - Analysis of the influence of the roof-edge shape on the wind flow. This task is carried out by comparing the results obtained for the conventional edge shape (simple corner) with a railing, a cantilever and a curved edge. - Analysis of the roof-wall coupling by testing different variations of a spherical roof on a high-rise building: spherical roof studied in the litera ture, spherical roof geometrically integrated with the walls (squared-plant) and spherical roof with a cylindrical wall. The flow behaviour on the roof according to the variation of the incident wind direction is commented. - Analysis of the effect of the building aspect ratio on the flow. - Analysis of the surrounding buildings effect on the wind flow on the target building roof. The contributions of the present Thesis can be summarized as follows: - It is demonstrated that RANS turbulence models obtain better results for the wind flow around buildings using the coefficients proposed by Crespo and those proposed by Bechmann and S0rensen than by using the standard ones. - It is demonstrated that RANS turbulence models can be validated for turbulent kinetic energy focusing on building roofs. - A new modification of the Durbin k e turbulence model is proposed in order to obtain a better agreement of the recirculation distance between CFD simulations and experimental results. - A linear relationship between the recirculation distance on a flat roof and the constant factor involved in the calculation of the turbulence velocity time scale is demonstrated. This discovery can be used by the research community in order to improve the turbulence modeling in different solvers (OpenFOAM, Fluent, CFX, etc.). - The compatibility of both photovoltaic-solar and wind energies on building roofs is demonstrated. A decrease of turbulence intensity due to the presence of the solar panels is demonstrated. - Scaling issues are demonstrated between full-scale buildings and windtunnel reduced-scale models. The necessity of respecting the similitude constraints is demonstrated. Either full-scale measurements or wind-tunnel experiments using water as a medium are needed in order to accurately reproduce the wind flow around buildings, specially when dealing with complex shapes (as solar panels, etc.). - The most adequate position (most adequate roof region) for the different kinds of wind turbines is highlighted attending to both velocity and turbulence intensity. The wind turbine positioning was investigated for the most habitual kind of building-roof shapes (flat, pitched, shed, vaulted and spherical). - The most habitual roof-edge shapes (simple edge, railing, cantilever and curved) were investigated, and their effect on the wind flow on a highrise building roof were analysed from the point of view of the wind energy exploitation. - An optimum building-roof shape is proposed for the urban wind energy exploitation. Such optimization includes: state-of-the-art roof shapes test, analysis of the influence of the roof-edge shape on the wind flow, study of the roof-wall coupling, sensitivity analysis of the roof width, exploration of the aspect ratio of the building-roof shape and investigation of the effect of the neighbouring buildings (considering different surrounding heights) on the wind now on the target building roof. The investigations comprise analysis of velocity, turbulent kinetic energy and turbulence intensity for all the cases.
Resumo:
La creciente demanda de energa elctrica y la necesidad de implementar energas no contaminantes hace que las llamadas tecnologas verdes sean cada da ms solicitadas. Entre estas tecnologas encontramos la energa solar y la energa elica; ambas tienen una trayectoria de uso e investigacin bastante amplia, sin embargo an presentan problemas de fondo que impiden dar mayor impulso a su uso. El objetivo de la presente tesis es presentar soluciones a problemas de optimizacin en campos conversores de energa. Para ello se analizan y resuelven dos problemas por medio de tcnicas de aerodinmica experimental: el primero sobre campos de colectores solares y el segundo sobre campos elicos. Las tcnicas de medicin utilizadas en aerodinmica, y en el presente trabajo, son: medicin de cargas, anemometra de hilo caliente, velocimetra por imagen de partculas y escaneo de presiones; adems de un anlisis estadstico de los datos. En el primer caso se ensayan experimentalmente colectores solares parablicos en donde, por cuestiones de seguridad o por proteccin contra el viento, se utilizan cercas. stas modifican el comportamiento del flujo corriente abajo y se ha encontrado que la distancia a la cual se colocan, as como el tipo de cercas (slida o permeable), modifican las cargas estructurales a las que los colectores estn expuestos. Los resultados demuestran que existe una distancia crtica en la cual la presencia de la cerca aumenta la carga en lugar de disminuirla, por lo cual la seleccin adecuada del parapeto y la distancia a la cual se coloca son de suma importancia para la optimizacin de la estructura. En el segundo caso se ensaya experimentalmente y simula numricamente la estela de turbinas elicas por medio de discos porosos. En donde un disco permeable simula el rotor de una turbina. El disco es capaz de semejar la estela y los efectos que sta puede causar corriente abajo. Los resultados muestran que seleccionando adecuadamente la porosidad, es posible simular coeficientes de empuje similares a los desarrollados por los aerogeneradores, adems la estela y sus efectos son semejantes a los medidos en campo. ABSTRACT The called green energy technologies are increasingly required because of the growing demand for electricity and the need to implement nonpolluting energy. Among the green energy technologies it is found the solar and the wind energy, both have a history of use and fairly extensive research; however they still have problems which limit to give them further impetus to its use. The aim of this thesis is to present solutions to optimization problems in energy harvesting. To this end it is analysed, and solved, two problems by means of techniques in experimental aerodynamics: the first issue with regard to parabolic troughs and the second about wind farms. The measurement techniques commonly used in aerodynamics, and used in this research work, are: measurement of loads, hot wire anemometry, particle image velocimetry and scanning of pressures; where data are collected and then an statistical analysis is done. In the first case it is tested parabolic troughs where, either for security reasons or protection against the wind actions, fences are used. These fences modify the behaviour of flow downstream and it was found that the distance at which they are placed, and the type of fences (solid or permeable) modify the structural loads to which the parabolic troughs are exposed. The results show that there is a critical distance at which the presence of the fence increases the load instead of protecting the parabolic trough, hence making the proper selection of the parapet and the distance at which it stands are paramount for the optimization of the structure. In the second case it is tested, experimentally and numerically, the wake of wind turbines by means of porous disks; where the permeable disc simulates a turbine rotor. The disc is able to mimic the wake and the effects that it can cause downstream. The results show that by properly selecting the porosity, it is possible to simulate drag coefficients similar to those developed by wind turbines; moreover the porous disk wake and its effects are similar to those measured on field.
Resumo:
This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the PETER 739 HAULER scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.