932 resultados para Automatic checkout equipment.
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.
Resumo:
El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation.
Resumo:
In order to properly understand and model the gene regulatory networks in animals development, it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains. In this paper, we propose a complete computational framework to fulfill this task and create a 3D Atlas of the early zebrafish embryogenesis annotated with both the cellular localizations and the level of expression of different genes at different developmental stages. The strategy to construct such an Atlas is described here with the expression pattern of 5 different genes at 6 hours of development post fertilization.
Resumo:
This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators
Resumo:
A framework for the automatic parallelization of (constraint) logic programs is proposed and proved correct. Intuitively, the parallelization process replaces conjunctions of literals with parallel expressions. Such expressions trigger at run-time the exploitation of restricted, goal-level, independent and-parallelism. The parallelization process performs two steps. The first one builds a conditional dependency graph (which can be implified using compile-time analysis information), while the second transforms the resulting graph into linear conditional expressions, the parallel expressions of the &-Prolog language. Several heuristic algorithms for the latter ("annotation") process are proposed and proved correct. Algorithms are also given which determine if there is any loss of parallelism in the linearization process with respect to a proposed notion of maximal parallelism. Finally, a system is presented which implements the proposed approach. The performance of the different annotation algorithms is compared experimentally in this system by studying the time spent in parallelization and the effectiveness of the results in terms of speedups.
Resumo:
This paper proposes a diagnosis algorithm for locating a certain kind of errors in logic programs: variable binding errors that result in abstract symptoms during compile-time checking of assertions based on abstract interpretation. The diagnoser analyzes the graph generated by the abstract interpreter, which is a provably safe approximation of the program semantics. The proposed algorithm traverses this graph to find the point where the actual error originates (a reason of the symptom), leading to the point the error has been reported (the symptom). The procedure is fully automatic, not requiring any interaction with the user. A prototype diagnoser has been implemented and preliminary results are encouraging.
Resumo:
Abstract is not available.
Resumo:
This paper presents a study of the effectiveness of global analysis in the parallelization of logic programs using strict independence. A number of well-known approximation domains are selected and tlieir usefulness for the application in hand is explained. Also, methods for using the information provided by such domains to improve parallelization are proposed. Local and global analyses are built using these domains and such analyses are embedded in a complete parallelizing compiler. Then, the performance of the domains (and the system in general) is assessed for this application through a number of experiments. We argüe that the results offer significant insight into the characteristics of these domains, the demands of the application, and the tradeoffs involved.
Resumo:
This paper presents a study of the effectiveness of three different algorithms for the parallelization of logic programs based on compile-time detection of independence among goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates different abstract interpretation-based program analyses. The complete system shows the task of automatic program parallelization to be practical. The trade-offs involved in using each of the algorithms in this task are studied experimentally, weaknesses of these identified, and possible improvements discussed.
Resumo:
Andorra-I is the first implementation of a language based on the Andorra Principie, which states that determinate goals can (and shonld) be run before other goals, and even in a parallel fashion. This principie has materialized in a framework called the Basic Andorra model, which allows or-parallelism as well as (dependent) and-parallelism for determinate goals. In this report we show that it is possible to further extend this model in order to allow general independent and-parallelism for nondeterminate goals, withont greatly modifying the underlying implementation machinery. A simple an easy way to realize such an extensión is to make each (nondeterminate) independent goal determinate, by using a special "bagof" constract. We also show that this can be achieved antomatically by compile-time translation from original Prolog programs. A transformation that fulfüls this objective and which can be easily antomated is presented in this report.
Resumo:
The Andorra family of languages (which includes the Andorra Kernel Language -AKL) is aimed, in principie, at simultaneously supporting the programming styles of Prolog and committed choice languages. On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in Prolog to run on AKL. However, Prolog programs cannot be executed directly on AKL. This is due to a number of factors, from more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism possible. This paper provides basic guidelines for constructing an automatic compiler of Prolog programs into AKL, which can bridge those differences. In addition to supporting Prolog, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original Prolog program.
Resumo:
There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.
Resumo:
Abstract is not available