921 resultados para Automated cataloguing
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
Resumo:
Self-measurement of blood pressure (SMBP) is increasingly used to assess blood pressure outside the medical setting. A prerequisite for the wide use of SMBP is the availability of validated devices providing reliable readings when they are handled by patients. This is the case today with a number of fully automated oscillometric apparatuses. A major advantage of SMBP is the great number of readings, which is linked with high reproducibility. Given these advantages, one of the major indications for SMBP is the need for evaluation of antihypertensive treatment, either for individual patients in everyday practice or in clinical trials intended to characterize the effects of blood-pressure-lowering medications. In fact, SMBP is particularly helpful for evaluating resistant hypertension and detecting white-coat effect in patients exhibiting high office blood pressure under antihypertensive therapy. SMBP might also motivate the patient and improve his or her adherence to long-term treatment. Moreover, SMBP can be used as a sensitive technique for evaluating the effect of antihypertensive drugs in clinical trials; it increases the power of comparative trials, allowing one to study fewer patients or to detect smaller differences in blood pressure than would be possible with the office measurement. Therefore, SMBP can be regarded as a valuable technique for the follow-up of treated patients as well as for the assessment of antihypertensive drugs in clinical trials.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
Abstract We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.
Resumo:
For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
OBJECTIVES: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. DESIGN: Retrospective analysis of prospectively collected data. SETTING: Neurosciences critical care unit of a university hospital. PATIENTS: A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square=45, p<.001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative "hypoperfusion" (CPP<CPPopt), severe disability with "hyperperfusion" (CPP>CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. CONCLUSIONS: Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients.
Resumo:
The fundamentals of Real-time Polymerase Chain Reaction,Automated capillary electrophoresis -Sanger sequencing and Fragmentanalysis- and "Next-generation" sequencing are reviewed. An overview ofapplications is presented using our own examples carried out in our facility.
Resumo:
In the past 5 years "Next-generation" Sequencing (NGS) technologies have transformed genomics by delivering fast, inexpensive and accurate genomeinformation changing the way we think about scientific approaches in basic,applied and clinical research. The inexpensive production of large volumes ofsequence data is the main advantage over the automated Sanger method,making this new technology useful for many applications. In this chapter, a brieftechnical review of NGS technologies is given, along with the keys to NGSsuccess and a broad range of applications for NGS technologies.
Resumo:
Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.