984 resultados para Auditory steady-state response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU . kg-1 . min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P<0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 ± 4 µU/ml in control and 66.4 ± 5.3 µU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 µU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 ± 0.8 mg . kg-1 . min-1 for control rats while 2.1 ± 0.3 mg . kg-1 . min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg . min . dl-1, was 13.7 ± 2.3 vs 3.3 ± 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switching power supplies are usually implemented with a control circuitry that uses constant clock frequency turning the power semiconductor switches on and off. A drawback of this customary operating principle is that the switching frequency and harmonic frequencies are present in both the conducted and radiated EMI spectrum of the power converter. Various variable-frequency techniques have been introduced during the last decade to overcome the EMC problem. The main objective of this study was to compare the EMI and steady-state performance of a switch mode power supply with different spread-spectrum/variable-frequency methods. Another goal was to find out suitable tools for the variable-frequency EMI analysis. This thesis can be divided into three main parts: Firstly, some aspects of spectral estimation and measurement are presented. Secondly, selected spread spectrum generation techniques are presented with simulations and background information. Finally, simulations and prototype measurements from the EMC and the steady-state performance are carried out in the last part of this work. Combination of the autocorrelation function, the Welch spectrum estimate and the spectrogram were used as a substitute for ordinary Fourier methods in the EMC analysis. It was also shown that the switching function can be used in preliminary EMC analysis of a SMPS and the spectrum and autocorrelation sequence of a switching function correlates with the final EMI spectrum. This work is based on numerous simulations and measurements made with the prototype. All these simulations and measurements are made with the boost DC/DC converter. Four different variable-frequency modulation techniques in six different configurations were analyzed and the EMI performance was compared to the constant frequency operation. Output voltage and input current waveforms were also analyzed in time domain to see the effect of the spread spectrum operation on these quantities. According to the results presented in this work, spread spectrum modulation can be utilized in power converter for EMI mitigation. The results from steady-state voltage measurements show, that the variable-frequency operation of the SMPS has effect on the voltage ripple, but the ripple measured from the prototype is still acceptable in some applications. Both current and voltage ripple can be controlled with proper main circuit and controller design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baroreflex sensitivity was studied in the same group of conscious rats using vasoactive drugs (phenylephrine and sodium nitroprusside) administered by three different approaches: 1) bolus injection, 2) steady-state (blood pressure (BP) changes produced in steps), 3) ramp infusion (30 s, brief infusion). The heart rate (HR) responses were evaluated by the mean index (mean ratio of all HR changes and mean arterial pressure (MAP) changes), by linear regression and by the logistic method (maximum gain of the sigmoid curve by a logistic function). The experiments were performed on three consecutive days. Basal MAP and resting HR were similar on all days of the study. Bradycardic responses evaluated by the mean index (-1.5 ± 0.2, -2.1 ± 0.2 and -1.6 ± 0.2 bpm/mmHg) and linear regression (-1.8 ± 0.3, -1.4 ± 0.3 and -1.7 ± 0.2 bpm/mmHg) were similar for all three approaches used to change blood pressure. The tachycardic responses to decreases of MAP were similar when evaluated by linear regression (-3.9 ± 0.8, -2.1 ± 0.7 and -3.8 ± 0.4 bpm/mmHg). However, the tachycardic mean index (-3.1 ± 0.4, -6.6 ± 1 and -3.6 ± 0.5 bpm/mmHg) was higher when assessed by the steady-state method. The average gain evaluated by logistic function (-3.5 ± 0.6, -7.6 ± 1.3 and -3.8 ± 0.4 bpm/mmHg) was similar to the reflex tachycardic values, but different from the bradycardic values. Since different ways to change BP may alter the afferent baroreceptor function, the MAP changes obtained during short periods of time (up to 30 s: bolus and ramp infusion) are more appropriate to prevent the acute resetting. Assessment of the baroreflex sensitivity by mean index and linear regression permits a separate analysis of gain for reflex bradycardia and reflex tachycardia. Although two values of baroreflex sensitivity cannot be evaluated by a single symmetric logistic function, this method has the advantage of better comparing the baroreflex sensitivity of animals with different basal blood pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Several methods have been used for this purpose, including differential hybridization, cDNA subtraction, differential display and, more recently, DNA chips. Subtractive hybridization has significantly improved after the polymerase chain reaction was incorporated into the original method and many new protocols have been established. Recently, the availability of the well-known coding sequences for some organisms has greatly facilitated gene expression analysis using high-density microarrays. Here, we describe some of these modifications and discuss the benefits and drawbacks of the various methods corresponding to the main advances in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin-converting enzyme (ACE) plays a central role in cardiac remodeling associated with pathological conditions such as myocardial infarction. The existence of different cell types in the heart expressing components of the renin-angiotensin system makes it difficult to evaluate their relative role under physiological and pathological conditions. Since myocytes are the predominant cellular constituent of the heart by mass, in the present study we studied the effects of glucocorticoids on ACE activity using well-defined cultures of neonatal rat cardiac myocytes. Under steady-state conditions, ACE activity was present at very low levels, but after dexamethasone treatment ACE activity increased significantly (100 nmol/l after 24 h) in a time-dependent fashion. These results demonstrate the influence of dexamethasone on ACE activity in rat cardiac myocytes. This is consistent with the idea that ACE activation occurs under stress conditions, such as myocardial infarction, in which glucocorticoid levels may increase approximately 50-fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the equivalent light hypothesis, molecular defects in the photoreceptor lead to a continuous activation of the photoreceptor cascade in a manner equivalent to real light. The consequences in diseases such as retinitis pigmentosa (RP) are as disruptive to the cells as real light. Two forms of the equivalent light hypothesis can be distinguished: strong - mutations in rhodopsin or other cascade proteins in some forms of RP continuously excite the visual phototransduction cascade; weak - disruption of outer segments in all patients with RP eliminates circulating dark current and blocks neurotransmitter release in a manner similar to real light. Both forms of the equivalent light hypothesis predict that pupils of patients with RP will be constricted like those of normal subjects in the light. The purpose of this study was to test the equivalent light hypothesis by determining whether steady-state pupil diameter following full dark adaptation is abnormally small in any of a sample of patients with RP. Thirty-five patients with RP and 15 normal subjects were tested. Direct steady-state pupillometric measures were obtained from one eye in a full-field dome after 45 min of dark adaptation by videotaping the pupil with an infrared camera. Mean pupil diameter in the dark was comparable (t = -0.15, P = 0.88) between patients with RP (6.85 ± 0.58 mm) and normal subjects (6.82 ± 0.76 mm). The results of the present study are clearly counter to the prediction of the second (weaker) form of the equivalent light hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the "lactate minimum test" in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A glutamate-sensitive inward current (Iglu) is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 ± 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 µM and a maximum increase of 51.2 ± 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM), shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxyurea is used for sickle-cell disease patients in order to increase fetal hemoglobin synthesis and consequently decrease the severity of pain episodes. Fetal hemoglobin, which is formed by gamma-globin chains A and G, is present in a constant composition throughout fetal development: about 75% of Ggamma and 25% of Agamma. In contrast, adult red cells contain about 40% of Ggamma and 60% of Agamma. In the present study, we analyzed the effect of hydroxyurea induction on the gamma chain composition of fetal hemoglobin in 31 sickle-cell disease patients treated with hydroxyurea. The control group was composed of 30 sickle-cell disease patients not treated with hydroxyurea in clinical steady state. The patients were older than 13 years and were not matched for age. All patients were seen at Hemocentro/UNICAMP and Boldrini Infantile Center, Campinas, SP, Brazil. The levels of total hemoglobin were significantly higher in patients treated with hydroxyurea (mean ± SD, 9.6 ± 2.16 g/dl) than in untreated patients (8.07 ± 0.91 g/dl). Fetal hemoglobin levels were also higher in treated patients (14.16 ± 8.31%) than in untreated patients (8.8 ± 4.09%), as was the Ggamma/Agamma ratio (1.45 ± 0.78 vs 0.98 ± 0.4, P < 0.005). The increase in the Ggamma/Agamma ratio in patients treated with hydroxyurea suggests the prevalence of a pattern of fetal hemoglobin synthesis, whereas patients not treated with hydroxyurea maintain the adult pattern of fetal hemoglobin synthesis. Because no correlation was observed between the Ggamma/Agamma ratio and total hemoglobin or fetal hemoglobin levels, the increase in Ggamma chain synthesis may not imply a higher production of hemoglobin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photophysical properties of zinc phthalocyanine (ZnPC) and chloroaluminum phthalocyanine (AlPHCl) incorporated into liposomes of dimyristoyl phosphatidylcholine in the presence and absence of additives such as cholesterol or cardiolipin were studied by time-resolved fluorescence, laser flash photolysis and steady-state techniques. The absorbance of the drugs changed linearly with drug concentration, at least up to 5.0 µM in homogeneous and heterogeneous media, indicating that aggregation did not occur in these media within this concentration range. The incorporation of the drugs into liposomes increases the dimerization constant by one order of magnitude (for ZnPC, 3.6 x 10(4) to 1.0 x 10(5) M-1 and for AlPHCl, 3.7 x 10(4) to 1.5 x 10(5) M-1), but this feature dose does not rule out the use of this carrier, since the incorporation of these hydrophobic drugs into liposomes permits their systemic administration. Probe location in biological membranes and predominant positions of the phthalocyanines in liposomes were inferred on the basis of their fluorescence and triplet state properties. Both phthalocyanines are preferentially distributed in the internal regions of the liposome bilayer. The additives affect the distribution of these drugs within the liposomes, a fact that controls their delivery when both are used in a biological medium, retarding their release. The addition of the additives to the liposomes increases the internalization of phthalocyanines. The interaction of the drugs with a plasma protein, bovine serum albumin, was examined quantitatively by the fluorescence technique. The results show that when the drugs were incorporated into small unilamellar liposomes, the association with albumin was enhanced when compared with organic media, a fact that should increase the selectivity of tumor targeting by these phthalocyanines (for ZnPC, 0.71 x 10(6) to 1.30 x 10(7) M-1 and for AlPHCl, 4.86 x 10(7) to 3.10 x 10(8) M-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä työ vastaa tarpeeseen hallita korkeapainevesisumusuuttimen laatua virtausmekaniikan työkalujen avulla. Työssä tutkitaan suutinten testidatan lisäksi virtauksen käyttäytymistä suuttimen sisällä CFD-laskennan avulla. Virtausmallinnus tehdään Navier-Stokes –pohjaisella laskentamenetelmällä. Työn teoriaosassa käsitellään virtaustekniikkaa ja sen kehitystä yleisesti. Lisäksi esitetään suuttimen laskennassa käytettävää perusteoriaa sekä teknisiä ratkaisuja. Teoriaosassa käydään myös läpi laskennalliseen virtausmekaniikkaan (CFD-laskenta) liittyvää perusteoriaa. Tutkimusosiossa esitetään käsitellyt suutintestitulokset sekä mallinnetaan suutinvirtausta ajasta riippumattomaan virtauslaskentaan perustuvalla laskentamenetelmällä. Virtauslaskennassa käytetään OpenFOAM-laskentaohjelmiston SIMPLE-virtausratkaisijaa sekä k-omega SST –turbulenssimallia. Tehtiin virtausmallinnus kaikilla paineilla, joita suuttimen testauksessa myös todellisuudessa käytetään. Lisäksi selvitettiin mahdolliset kavitaatiokohdat suuttimessa ja suunniteltiin kavitaatiota ehkäisevä suutingeometria. Todettiin myös lämpötilan ja epäpuhtauksien vaikuttavan kavitaatioon sekä mallinnettiin lämpötilan vaikutusta. Luotiin malli, jolla suuttimen suunnitteluun liittyviin haasteisiin voidaan vastata numeerisella laskennalla.