953 resultados para Attribute inspection
Resumo:
As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.
Resumo:
Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.
Resumo:
It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.
Resumo:
The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.
Resumo:
Chromosome rearrangements involved in the formation of merodiploid strains in the Bacillus subtilis 168-166 system were explained by postulating the existence of intrachromosomal homology regions. This working hypothesis was tested by analysing sequences and restriction patterns of the, as yet uncharacterized, junctions between chromosome segments undergoing rearrangements in parent, 168 trpC2 and 166 trpE26, as well as in derived merodiploid strains. Identification, at the Ia/Ib chromosome junction of both parent strains, of a 1.3 kb segment nearly identical to a segment of prophage SPbeta established the existence of one of the postulated homology sequences. Inspection of relevant junctions revealed that a set of different homology regions, derived from prophage SPbeta, plays a key role in the formation of so-called trpE30, trpE30+, as well as of new class I merodiploids. Analysis of junctions involved in the transfer of the trpE26 mutation, i.e. simultaneous translocation of chromosome segment C and rotation of the terminal relative to the origin moiety of the chromosome, did not confirm the presence of any sequence suitable for homologous recombination. We propose a model involving simultaneous introduction of four donor DNA molecules, each comprising a different relevant junction, and their pairing with the junction regions of the recipient chromosome. The resolution of this structure, resting on homologous recombination, would confer the donor chromosome structure to the recipient, achieving some kind of 'transstamping'. In addition, a rather regular pattern of inverse and direct short sequence repeats in regions flanking the breaking points could be correlated with the initial, X-ray-induced, rearrangement.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
Numerous in vitro studies attribute to human TRIM5α some modest anti-HIV-1 activity and human population studies suggest some differential effect of TRIM5α polymorphisms on disease progression. If the activity of TRIM5α were relevant in vivo, it could result in positive selection on the viral capsid. To address this issue, we identified 10 positively selected sites in HIV-1 capsid from multiple viral strains and generated 17 clade B viruses carrying a minor (i.e. low frequency) residue or an alanine at those positions. All recombinant viruses were susceptible to the modest effect of common human TRIM5α and allelic variants R136Q, and H419Y; H43Y and G249D TRIM5α were generally inactive. Increased sensitivity to TRIM5α was observed for some capsid variants, suggesting that minor residues are selected against in human populations. On the other hand, the modest potency of human TRIM5α does not translate in escape mutations in the viral capsid.
Resumo:
The Vertical Clearance Log is prepared for the purpose of providing vertical clearance restrictions by route on the primary road system. This report is used by the Iowa Department of Transportation’s Motor Carrier Services to route oversize vehicles around structures with vertical restrictions too low for the cargo height. The source of the data is the Geographic Information Management System (GIMS) that is managed by the Office of Research & Analytics in the Performance & Technology Division. The data is collected by inspection crews and through the use of LiDAR technology to reflect changes to structures on the primary road system. This log is produced annually.
Resumo:
There are growing concerns on long-term health consequences, notably on fertility rates, of plasticizers such as phthalates. While di(2-ethylhexyl)phthalate (DEHP) is currently used in several medical devices, newborns in the neonatal intensive care unit are both more exposed and more vulnerable to DEHP. The objectives of this study were to identify, count, and describe possible sources of DEHP in a neonatal care unit. Our method consisted in the listing and the inspection of the information on packaging, complemented by contact with manufacturers when necessary. According to the results, 6% of all products and 10% of plastic products contained some DEHP; 71% of these involved respiratory support devices. A vast majority of the items showed no information on the content of DEHP. Further research is needed, particularly to determine the effects of such an early exposure and to study and develop safer alternatives.
Resumo:
Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.
Resumo:
Visual implant elastomer (VIE) has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years), the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments.
Resumo:
The objective of this work was to evaluate the field attractiveness of Thyanta perditor synthetic sex pheromone-baited traps, its attractivity to other stink bug species, and the response of T. perditor to a geometric isomer of the sex pheromone. Two-liter transparent plastic bottles traps were baited with rubber septa impregnated with the treatments: 1 mg of methyl-(2E,4Z,6Z)-decatrienoate [(2E,4Z,6Z)-10:COOMe], the male sex pheromone of T. perditor; 1 mg of (2E,4Z,6Z)-10:COOMe protected from sunlight in standard PVC plumbing pipe; 1 mg of its geometric isomer [(2E,4E,6Z)-10:COOMe]; and traps with rubber septa impregnated with hexane (control). The experiment was carried out in field during the soybean reproductive stages. Traps were monitored weekly, and the captures were compared to the population density estimated by the sampling cloth and visual inspection monitoring techniques. Traps baited with the sex pheromone, protected or not, were more effective in capturing T. perditor than traps baited with the isomer or the hexane. Thyanta perditor sex pheromone showed cross-attraction to other stink bug species, such as Euschistus heros, Edessa meditabunda, Piezodorus guildinii and Nezara viridula. Pheromone-baited traps can be used in population monitoring and to identify the relative composition of stink bug guilds.
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.