929 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years there has been an increased interest in applying non-parametric methods to real-world problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased flexibility when compared with parametric models. These methods use Bayesian learning, which generally leads to analytically intractable posteriors. This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior. In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior is the result of propagating the first and second moments of intermediate posteriors obtained by combining a new example with the previous approximation. The propagation of em functional forms is solved by showing the existence of a parametrisation to posterior moments that uses combinations of the kernel function at the training points, transforming the Bayesian online learning of functions into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of parameters with the size of the data, making the method inapplicable to large datasets. The second step solves the problem of the exploding parameter size and makes GPs applicable to arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the KL-divergence between GPs. This second approximation is with a constrained GP in which only a small subset of the whole training dataset is used to represent the GP. This subset is called the em Basis Vector, or BV set and the resulting GP is a sparse approximation to the true posterior. As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way the posterior approximation from the first step is obtained. We combine the sparse approximation with an extension to the Bayesian online algorithm that allows multiple iterations for each input and thus approximating a batch solution. The resulting sparse learning algorithm is a generic one: for different problems we only change the likelihood. The algorithm is applied to a variety of problems and we examine its performance both on more classical regression and classification tasks and to the data-assimilation and a simple density estimation problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Gorlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Gorlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented. Copyright © 2008 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current methods for retrieving near-surface winds from scatterometer observations over the ocean surface require a forward sensor model which maps the wind vector to the measured backscatter. This paper develops a hybrid neural network forward model, which retains the physical understanding embodied in CMOD4, but incorporates greater flexibility, allowing a better fit to the observations. By introducing a separate model for the midbeam and using a common model for the fore and aft beams, we show a significant improvement in local wind vector retrieval. The hybrid model also fits the scatterometer observations more closely. The model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs. We show that adding more high wind speed observations in the training set improves wind vector retrieval at high wind speeds without compromising performance at medium or low wind speeds. Copyright 2001 by the American Geophysical Union.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An investigation of behavioural patterns that form a basis for termite control in the Australasian region was undertaken using laboratory colonies of the subterranean termite Reticulitermes santonensis (Feytaud). The study attempted to build a picture of the behavioural elements of individuals in a colony and based on this, trophallaxis, aggression and cannibalism were investigated in detail. Preliminary study of food transmission showed that 'workers' played a major role in the distribution of food. It was found, that among factors responsible for release of trophallactic behaviour the presence of 'right odour' between participants was important. It also appeared that the role taken by individuals depended on whether they were hungry or fully fed. Antennal palpation was shown by donors and acceptors alike and this seemed to be excitatory in function. Introduction of aliens into nests elicited aggression and these aliens were often killed. Factors eliciting aggression were investigated and colony odour was found to be important. Further investigations revealed that development of colony odour was governed by genetical and environmental mechanisms. Termite response to injury and death was also governed by odour. In the case of injury either the fresh haemolymph from the wound or some component of the haemolymph evoked cannibalism. Necrophagic behaviour was found to be released by fatty acids found in the corpses. Finally, the response of colonies to nestmates carrying arsenic trioxide was investigated. It was found that living and freshly dead arsenic-carrying nestmates were treated like normal nestmates, resulting in high initial mortality. However, poisoned cadavers soon became repellant and were buried thus preventing further spread of the poison to the rest of the colony. This suggested that complete control of subterranean termites by arsenic trioxide is unlikely to be fully effective, especially in those species which are capable of developing secondary reproductives from survivors and thus rebuilding the community.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis encompasses an investigation of the behaviour of concrete frame structure under localised fire scenarios by implementing a constitutive model using finite-element computer program. The investigation phase included properties of material at elevated temperature, description of computer program, thermal and structural analyses. Transient thermal properties of material have been employed in this study to achieve reasonable results. The finite-element computer package of ANSYS is utilized in the present analyses to examine the effect of fire on the concrete frame under five various fire scenarios. In addition, a report of full-scale BRE Cardington concrete building designed to Eurocode2 and BS8110 subjected to realistic compartment fire is also presented. The transient analyses of present model included additional specific heat to the base value of dry concrete at temperature 100°C and 200°C. The combined convective-radiation heat transfer coefficient and transient thermal expansion have also been considered in the analyses. For the analyses with the transient strains included, the constitutive model based on empirical formula in a full thermal strain-stress model proposed by Li and Purkiss (2005) is employed. Comparisons between the models with and without transient strains included are also discussed. Results of present study indicate that the behaviour of complete structure is significantly different from the behaviour of individual isolated members based on current design methods. Although the current tabulated design procedures are conservative when the entire building performance is considered, it should be noted that the beneficial and detrimental effects of thermal expansion in complete structures should be taken into account. Therefore, developing new fire engineering methods from the study of complete structures rather than from individual isolated member behaviour is essential.