913 resultados para Aquatic mammals
Resumo:
As inorganic arsenic is a proven human carcinogen, significant effort has been made in recent decades in an attempt to understand arsenic carcinogenesis using animal models, including rodents (rats and mice) and larger mammals such as beagles and monkeys. Transgenic animals were also used to test the carcinogenic effect of arsenicals, but until recently all models had failed to mimic satisfactorily the actual mechanism of arsenic carcinogenicity. However, within the past decade successful animal models have been developed using the most common strains of mice or rats. Thus dimethylarsinic acid (DMA), an organic arsenic compound which is the major metabolite of inorganic arsenicals in mammals, has been proven to be tumorigenic in such animals. Reports of successful cancer induction in animals by inorganic arsenic (arsenite and arsenate) have been rare, and most carcinogenetic studies have used organic arsenicals such as DMA combined with other tumor initiators. Although such experiments used high concentrations. of arsenicals for the promotion of tumors, animal models using doses of arsenicals species closed to the exposure level of humans in endemic areas are obviously the most significant. Almost all researchers have used drinking water or food as the pathway for the development of animal model test systems in order to mimic chronic arsenic poisoning in humans; such pathways seem more likely to achieve desirable results. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993 1996). The sex of 465 nestlings from 169 broods % as determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in an), year and the variance in brood sex ratios did not deviate from the binomial distribution, Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size, The sex ratio or broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience, However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding or fairy martin life history and breeding ecology.
Resumo:
A 12-day-old nestling Gouldian finch (Erythrura [Chloebia] gouldiae) was presented for investigation of a mortality problem in nestling finches raised by Bengalese finch foster parents. On histological examination, large numbers of spores consistent with a microsporidian organism were present within the small intestinal mucosa. Electron microscopy and molecular studies (sequencing the 5' end of the ssu rRNA gene) further defined the organism as Encephalitozoon hellem. Sequence homology with other eukaryotes was determined using a BLASTN search from the NCBI GenBank database. The finch isolate sequences showed greater than 99% homology with those of previously reported human and avian isolates.
Resumo:
Flying foxes are commonly thought of as highly social mammals, yet little is known about the dynamics of their social interactions at a day roost. The aim of the present study was to examine the nature of the seasonal activities of territoriality and courtship amongst wild flying foxes in Australia. Focal observations were conducted at two permanent roosts of black flying foxes Pteropus alecto during periods of peak social interaction in the summers of 1999 and 2000 in urban Brisbane, Queensland. Observations of male territoriality were conducted at dawn and began eight weeks prior to the commencement of mating. The majority of defense bouts (87%) consisted of ritualised pursuit, while 13% of bouts involved physical contact expressed as either wrestling or hooking. One male with an unusually large territory took significantly longer to defend it than other males with less territory to defend. Observations of courtship revealed repetitive courtship sequences, including pre-copulatory approaches by the males, copulation attempts and grooming/resting periods. Thirty-four complete courtship sequences incorporating 135 copulation attempts were recorded over two seasons. Females actively resisted courtship approaches by males, forcing males to display a continuous determination to mate over time where determination can be considered an indicator of 'fitness'. The courtship bout length of females with suckling young was significantly longer ((x) over bar +/- SE; 230.9 +/- 22.16 s) than that of females unencumbered by large pups (158.5 +/- 9.69 s), although the length of copulations within those courtships was not (45.6 +/- 5.19 versus 36.2 +/- 3.43 s).
Resumo:
Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1-6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1-2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0-8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitallv at 2 mm. (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.
Resumo:
The family of lemnacae colloquially known as duckweed contains the world's smallest species of flowering plants (macrophytes). Aquatic and free-floating, their most striking qualities are a capacity for explosive reproduction and an almost complete lack of fibrous material. They are widely used for reducing chemical loading in facultative sewage lagoons, but their greatest potential lies in their ability to produce large quantities of protein rich biomass, suitable for feeding to a wide range of animals, including fish, poultry and cattle. Despite these qualities there are numerous impediments to these plants being incorporated into western farming systems. Large genetically determined variations in growth in response to nutrients and climate, apparent anti-nutritional factors, concerns about sequestration of heavy metals and possible transference of pathogens raise questions about the safety and usefulness of these plants. A clear understanding of how to address and overcome these impediments needs to be developed before duckweed is widely accepted for nutrient reclamation and as a source of animal feed.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Plasma concentrations of growth hormone (GH) were measured in the brushtail possum (Trichosurus vulpecula) pouch young from 25 through to 198 days post-partum (n=71). GH concentrations were highest early in pouch life (around 100 ng/ml), and thereafter declined in an exponential fashion to reach adult concentrations (10.8 +/- 1.8 ng/ml; n=21) by approximately 121-145 days post-partum, one to two months before the young is weaned. Growth hormone-binding protein (GHBP), which has been shown to modify the cellular actions of GH in eutherian mammals, was identified for the first time in a marsupial. Based on size exclusion gel filtration, possum GHBP had an estimated molecular mass of approximate to 65 kDa, similar to that identified in other mammalian species, and binding of I-125-labelled human GH (hGH) was displaced by excess hGH (20 mug). An immunoprecipitation method, in which plasma GHBP was rendered polyethylene glycol precipitable with a monoclonal antibody to the rabbit GHBP/GH receptor (MAb 43) and labelled with I-125-hGH, was used to quantitate plasma GHBP by Scatchard analysis in the developing (pooled plasma samples) and adult (individual animals) possums. Binding affinity (K-a) values in pouch young aged between 45 and 54 and 144 and 153 days post-partum varied between 1.0 and 2.4 x 10(9)/M, which was slightly higher than that in adult plasma (0.96 +/- 0.2 x 10(9)/M, n = 6). Binding capacity (B-max) values increased from non-detectable levels in animals aged 25-38 days post-partum to reach concentrations around half that seen in the adult (1.4 +/- 0.2 x 10(-9) M) by about 117 days post-partum and remained at this level until 153 days post-partum. Therefore, in early pouch life when plasma GH concentrations are highest, the very low concentrations of GHBP are unlikely to be important in terms of competing with GH-receptor for ligand or altering the half-life of circulating GH.
Resumo:
In the present study we addressed the issue of somatosensory representation and plasticity in a nonmammalian species, the barn owl. Multiunit mapping techniques were used to examine the representation of the specialized receptor surface of the claw in the anterior Wulst. We found dual somatotopic mirror image representations of the skin surface of the contralateral claw. In addition, we examined both representations 2 weeks after denervation of the distal skin surface of a single digit. In both representations, the denervated digital representation became responsive to stimulation of the adjacent, mutually functional, digit. The mutability and multiple representations indicates that the Wulst provides the owl with sensory processing capabilities analogous to those in mammals.
Resumo:
The present study describes the distribution and cellular morphology of catecholaminergic neurons in the CNS of two species of monotreme, the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these neurons. The standard A1-A17, C1-C3 nomenclature was used for expediency, but the neuroanatomical names of the various nuclei have also been given. Monotremes exhibit catecholaminergic neurons in the diencephalon (All, A12, A13, A14, A15), midbrain (A8, A9, A10), rostral rhombencephalon (A5, A6, A7), and medulla (A1, A2, C1, C2). The subdivisions of these neurons are in general agreement with those of other mammals, and indeed other amniotes. Apart from minor differences, those being a lack of A4, A3, and C3 groups, the catecholaminergic system of monotremes is very similar to that of other mammals. Catecholaminergic neurons outside these nuclei, such as those reported for other mammals, were not numerous with occasional cells observed in the striatum. It seems unlikely that differences in the sleep phenomenology of monotremes, as compared to other mammals, can be explained by these differences. The similarity of this system across mammalian and amniote species underlines the evolutionary conservatism of the catecholaminergic system. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
The distribution and cellular morphology of serotonergic neurons in the brain of two species of monotremes are described. Three clusters of serotonergic neurons were found: a hypothalamic cluster, a cluster in the rostral brainstem and a cluster in the caudal brainstem. Those in the hypothalamus consisted of two groups, the periventricular hypothalamic organ and the infundibular recess, that were intimately associated with the ependymal wall of the third ventricle. Within the rostral brainstem cluster, three distinct divisions were found: the dorsal raphe nucleus (with four subdivisions), the median raphe nucleus and the cells of the supralemniscal region. The dorsal raphe was within and adjacent to the periaqueductal gray matter, the median raphe was associated with the midline ventral to the dorsal raphe, and the cells of the supralemniscal region were in the tegmentum lateral to the median raphe and ventral to the dorsal raphe. The caudal cluster consisted of three divisions: the raphe obscurus nucleus, the raphe pallidus nucleus and the raphe magnus nucleus. The raphe obscurus nucleus was associated with the dorsal midline at the caudal-most part of the medulla oblongata. The raphe pallidus nucleus was found at the ventral midline of the medulla around the inferior olive. Raphe magnus was associated with the midline of the medulla and was found rostral to both the raphe obscurus and raphe pallidus. The results of our study are compared in an evolutionary context with those reported for other mammals and reptiles. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
We determined which factors predict the presence and abundance of Dusky Moorhens (Gallinula tenebrosa) at wetlands by surveying the ecological and habitat characteristics of 62 sites across south-east Queensland. Moorhens were observed in 48 of the sites sampled. They were more likely to be found at sites surrounded by taller terrestrial vegetation and where free-floating and attached aquatic vegetation was more abundant. The number of moorhens found at a site increased in relation to vegetation height, the abundance of attached aquatic vegetation and the number of purple swamphens observed. These results suggest that there are ecological constraints on the distribution of moorhens, and that food abundance and the availability of suitable nesting sites determine the overall distribution and abundance of moorhens in wetlands. Adult moorhens develop brightly coloured fleshy frontal shields, bills and legs when breeding, although in some populations birds maintain year-round colouration. We observed year-round breeding colouration in 23 out of 34 sampling sites that had moorhens and were surveyed in August. Coloured moorhens were found during winter at sites with higher minimum winter temperatures, and more abundant free-floating and submerged leafy vegetation. In addition, higher proportions of moorhens were coloured at sites with higher mean minimum temperatures. The retention of year-round breeding colouration appears to be restricted to areas with warmer winter temperatures and more abundant food. The results suggest that areas not occupied by moorhens are of inadequate quality to support breeding populations. We suggest that ecological constraints on independent breeding in Dusky Moorhens may have favoured the evolution of their unusual cooperative breeding system, which involves frequent mate-sharing by both sexes.