967 resultados para Antibiotic Resistance
Resumo:
We have demonstrated that Leishmania spp. grown as promastigotes, are sensitive to the K+ channel inhibitors 4-aminopyridine and glibenclamide. Their host cells, the macrophages, are not affected by similar concentrations of the drugs. We have also initiated the molecular characterization of the mechanisms involved in the development of drug resistance to glibenclamide by the parasite. Therefore, we have selected experimentally and begun to characterize the Venezuelan Leishmania (Leishmania) strain, NR resistant to glibenclamide [NR(Gr)]. The analysis of genomic DNA evidenced the existence of a fragment which apparently is amplified in NR(Gr). The fragment recognized by the pgpA probe, related to the Leishmania P-glycoprotein family and which was originally isolated from L. tarentolae, showed a size polymorfism between the sensitive and the resistant strain. These results suggest that the development of resistance to glibenclamide in the strain NR(Gr) might be associated with the amplification of the ltpgpA or related gene(s)
Resumo:
The presence of Vibrio cholerae non-O1 in water supplies for human consumption in the city of Campeche and rural locality of Bécal was investigated. V. cholerae non-O1 was detected in 5.9% of the samples obtained in deep pools of Campeche. Studies conducted in Bécal and neighbourhood of Morelos in Campeche indicated that collected samples harbored V. cholerae non-O1 in 31.5% and 8.7% respectively. There was a particular pattern of distribution of V. cholerae non-O1 serotypes among different studied regions. Accordingly, V. cholerae non-O1 serotype O14 predominated in the deep pools of Campeche and together with V. cholerae non-O1, O155 were preferentially founds in samples taken from intradomiciliary faucets in the neighbourhood of Morelos. Samples from Bécal predominantly presented the serotype O112. 60% and 53.8% of all studied strains of V. cholerae non-O1 proved to be resistant to ampicillin and carbenicillin. 3.1%, 7.7% and 6.2% presented resistant to doxycycline, trimethoprim-sulfamethoxazole and erythromycin respectively. The study showed the necessity of performing a strong epidemiologic surveillance for emergence and distribution of V. cholerae non-O1
Resumo:
One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.
Resumo:
In this study, we characterize proviral DNA of 20 HIV-1 asymptomatic antiretroviral-naive patients from Venezuela in env, gag, and pol genes regions. Results from both env/gag HMA subtyping and phylogenetic analysis of pol partial sequences led to the description of clade B in all cases. Nevertheless, the high prevalence of polymorphisms was particularly evident among the protease sequences. A 10% prevalence of major resistance mutations to RTIs was found. Our data also suggested that the protease polymorphisms I62T and V77T could be considered as molecular markers of the subtype B local epidemic. In addition, we show how proviral DNA can be used as a reliable tool to follow trends of resistance mutation transmission.
Resumo:
Tolerance is a poorly understood phenomenon that allows bacteria exposed to a bactericidal antibiotic to stop their growth and withstand drug-induced killing. This survival ability has been implicated in antibiotic treatment failures. Here, we describe a single nucleotide mutation (tol1) in a tolerant Streptococcus gordonii strain (Tol1) that is sufficient to provide tolerance in vitro and in vivo. It induces a proline-to-arginine substitution (P483R) in the homodimerization interface of enzyme I of the sugar phosphotransferase system, resulting in diminished sugar uptake. In vitro, the susceptible wild-type (WT) and Tol1 cultures lost 4.5 and 0.6 log(10) CFU/ml, respectively, after 24 h of penicillin exposure. The introduction of tol1 into the WT (WT P483R) conferred tolerance (a loss of 0.7 log(10) CFU/ml/24 h), whereas restitution of the parent sequence in Tol1 (Tol1 R483P) restored antibiotic susceptibility. Moreover, penicillin treatment of rats in an experimental model of endocarditis showed a complete inversion in the outcome, with a failure of therapy in rats infected with WT P483R and the complete disappearance of bacteria in animals infected with Tol1 R483P.
Resumo:
At present, most Neisseria gonorrhoeae testing is done with ß-lactamase and agar dilution tests with common therapeutic agents. Generally, in bacteriological diagnosis laboratories in Argentina, study of antibiotic susceptibility of N.gonorrhoeae is based on ß-lactamase determination and agar dilution method with common therapeutic agents. The National Committee for Clinical Laboratory Standards (NCCLS) has recently described a disk diffusion test that produces results comparable to the reference agar dilution method for antibiotic susceptibility of N.gonorrhoeae, using a dispersion diagram for analyzing the correlation between both techniques. We obtained 57 gonococcal isolates from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina. Antibiotic susceptibility tests using agar dilution and disk diffusion techniques were compared. The established NCCLS interpretive criteria for both susceptibility methods appeared to be applicable to domestic gonococcal strains. The correlation between the MIC's and the zones of inhibition was studied for penicillin, ampicillin, cefoxitin, spectinomycin, cefotaxime, cephaloridine, cephalexin, tetracycline, norfloxacin and kanamycin. Dispersion diagrams showed a high correlation between both methods.
Resumo:
The present work aims at learning the period of resistance to starvation (molting/death) of Triatoma rubrofasciata in different stages of development and the respective loss of weight until death. Eggs of specimens from the greater area of the city of São Luis in the State of Maranhão, Brazil, yielded approximately 300 nymphs. These nymphs were placed in labelled Borrel glasses, in which they were weekly fed on rats (Rattus norvegicus), until reaching the stage to be observed. The experiments were conducted in a climatic chamber regulated at 29 ± 1° C, 70% relative humidity and 12 hr photoperiod. The resistance to starvation increased according to the stage of development, except for adult bugs, whose results were similar to the 3rd stage nymphs. In all these development stages there was an abrupt loss of weight in the first week, followed by a gradual loss until death. Comparing this work with those of other authors, it was observed that T. rubrofasciata is among the less resistant triatomine species.
Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis
Resumo:
A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.
Resumo:
National malaria control programmes have the responsibility to develop a policy for malaria disease management based on a set of defined criteria as efficacy, side effects, costs and compliance. These will fluctuate over time and national guidelines will require periodic re-assessment and revision. Changing a drug policy is a major undertaking that can take several years before being fully operational. The standard methods on which a decision can be taken are the in vivo and the in vitro tests. The latter allow a quantitative measurement of the drug response and the assessment of several drugs at once. However, in terms of drug policy change its results might be difficult to interpret although they may be used as an early warning system for 2nd or 3rd line drugs. The new WHO 14-days in vivo test addresses mainly the problem of treatment failure and of haematological parameters changes in sick children. It gives valuable information on whether a drug still `works'. None of these methods are well suited for large-scale studies. Molecular methods based on detection of mutations in parasite molecules targeted by antimalarial drugs could be attractive tools for surveillance. However, their relationship with in vivo test results needs to be established
Resumo:
OBJECTIVE: The associations between inflammation, diabetes and insulin resistance remain controversial. Hence, we assessed the associations between diabetes, insulin resistance (using HOMA-IR) and metabolic syndrome with the inflammatory markers high-sensitive C-reactive protein (hs-CRP), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). DESIGN: Cross-sectional study. PARTICIPANTS: Two thousand eight hundred and eighty-four men and 3201 women, aged 35-75, participated in this study. METHODS: C-reactive protein was assessed by immunoassay and cytokines by multiplexed flow cytometric assay. In a subgroup of 532 participants, an oral glucose tolerance test (OGTT) was performed to screen for impaired glucose tolerance (IGT). RESULTS: IL-6, TNF-α and hs-CRP were significantly and positively correlated with fasting plasma glucose (FPG), insulin and HOMA-IR. Participants with diabetes had higher IL-6, TNF-α and hs-CRP levels than participants without diabetes; this difference persisted for hs-CRP after multivariate adjustment. Participants with metabolic syndrome had increased IL-6, TNF-α and hs-CRP levels; these differences persisted after multivariate adjustment. Participants in the highest quartile of HOMA-IR had increased IL-6, TNF-α and hs-CRP levels; these differences persisted for TNF-α and hs-CRP after multivariate adjustment. No association was found between IL-1β levels and all diabetes and insulin resistance markers studied. Finally, participants with IGT had higher hs-CRP levels than participants with a normal OGTT, but this difference disappeared after controlling for body mass index (BMI). CONCLUSION: We found that subjects with diabetes, metabolic syndrome and increased insulin resistance had increased levels of IL6, TNF-α and hs-CRP, while no association was found with IL-1β. The increased inflammatory state of subjects with IGT is partially explained by increased BMI.
Resumo:
To determine if gestational factors affect the severity of L. major infection, this study assessed the levels of IL-4 mRNA and IFN-gamma mRNA in popliteal lymph node cells of pregnant C57BL/6 mice mated at 5 hours, 16 hours and 15 days post L. major infection using PCR. Infected pregnant C57BL/6 mice developed larger cutaneous footpad lesions compared with non-pregnant infected C57BL/6 mice. The resolution of footpad lesions commenced after 8th week in C57BL/6 mice mated at 16 hrs post L. major infection but 12 weeks in C57BL/6 mice mated at 5 hrs and 15 days post L. major infection. C57BL/6 mice that were infected 20 days post partum resolved L. major infection effectively. But, the lesions in infected pregnant C57BL/6 mice and infected non-pregnant C57BL/6 mice were not as large as in susceptible BALB/c mice. The mean litter weights were similar in pregnant infected C57BL/6 mice mated at different stages of L. major infection but were slightly lower than weights of litters from pregnant uninfected C57BL/6 mice. In 5 days infected pregnant C57BL/6 mice, the levels of IFN-gamma were raised compared with the levels of IL-4 but those mated at 15 days post L. major infection had highest level of IFN-gamma mRNA. In 10 days pregnant infected C57BL/6 mice, levels of IL-4 were raised compared with IFN-gamma but mice mated at 16 hrs post L. major infection had highest level of IL-4. In 15 days pregnant infected mice, the levels of IL-4 were higher than IFN-gamma irrespective of the stage of L. major infection when the mice were mated. Mice infected with L. major 20 days post-partum produced more IFN-gamma than IL-4 from 16 hrs post L. major infection onwards. It may be concluded that increased IL-4 in pregnant infected C57BL/6 mice impairs the resistance of C57BL/6 mice to L. major infection especially in mice that were pregnant before effective immunity (5 hours post L. major infection) is mounted against L. major infection.
Resumo:
The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a "total evidence" approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specific PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.
Resumo:
Resistance and susceptibility of Biomphalaria snails to Schistosoma mansoni sporocysts occur in different degrees. Histopathology reflects these diferences. In a state of tolerance numerous sporocysts in different stages of differentiation are seen in the absence of host tissue reaction. However extensive diffuse and focal proliferation of amebocytes with sequestration and destruction of many parasitic structures appear in resistant snails. Some snails are totally resistant and when exposed to infecting miracidia may never eliminate cercarie. Sequential histopathological examination has revealed that in such cases the infected miracidia are destroyed a few minutes to 24 hr after penetration in the snail. However, B. glabrata that were exposed to S. mansoni miracidia and three moths later failed to shed cercariae, exhibited focal and diffuse proliferation of amebocytes in many organs in the absence of pasitic structures. These lesions were similar to those observed in resistant snails that were still eliminating a few cercariae, with the difference that no recognizable sporocystic structures or remmants were present. Histological investigation carried out in similarly resistant B. tenagophila and B. straminea presented essentially normal histologic structures. Only occasionally a few focal proliferative (granulomatous) amebocytic reactions were seen in ovotestis and in the tubular portion of the kidney. Probably, there are two types of reactions to miracidium presented by totally resistant snails: one would implicate the immediate destruction of the miracidium leaving no traces in the tissues; the other involving late reactions that seem to completely destroy invading sporocysts and leave histological changes.