952 resultados para Anion pairing
Resumo:
In the crystal structure of the title compound, (NH4)[AsO2 (OH)(C6H4NO2)], the 4-nitrophenylarsonate anions and ammonium cations are linked through hydrogen bonds to form infinite chains along the b axis. The hydroxyl O atom of the 4-nitrophenylarsonate anion acts as both an acceptor and a donor of hydrogen bonds. All atoms are located in general positions.
Resumo:
A method of capillary HPLC-high-resolution MS was developed for the trace analysis of ATP, GTP, dATP and dGTP Dimethylhexylamine (DMHA) was used as ion-pairing agent for the HPLC retention and separation of the nucleotides and positive ion electrospray time-of-flight MS was used for the detection. The application of capillary HPLC allowed minimal usage of DMHA while providing excellent peak retention and resolution, which significantly reduced the ion suppression in electrospray ionization-MS analysis and thus increased the sensitivity. Adduct ions of nucleotides and DMHA were used as quantitative ions in order to achieve the best sensitivity. DMHA concentration at 5 mM in the aqueous mobile phase at pH 7 was found to be the optimal conditions for the C Is capillary column. The method was applied to determine ATP level in cultured C6 glioma cells that were treated with toxic concentrations of Zn. The results showed that the cellular ATP level decreased from 2.7 pmol/cell (<10% cell death) in average control cell samples to 0.36 pmol/cell as the concentration of Zn increased to 120 mg/l (>35% cell death) in culture medium.
Resumo:
The reaction of trivacant precursor Nag [A-PW9O34] . 19H(2)O with Ti(SO4)(2) affords the novel dimeric, di-Ti-IV-substituted tungstophosphate K4Na6[alpha-1,2-PW10Ti2O39](2) . 14H(2)O. The X-ray structural determination shows the dimeric, anhydride structure was formed by two Ti-O-Ti bonds linking two di-titanium-substituted Keggin anion [alpha-1,2-PW10Ti2O40]. It was also characterized by elemental analysis, TGA, FT-IR and U-V-vis spectroscopies.
Resumo:
Ru(bpy)(3)(2+) electrochemiluminescence (ECL) method and electrocatalysis method were first used to study the ion-gate behavior of supported lipid bilayer membrane (sBLM). We found that sBLM, made of dimethyldioctadecylammonium bromide (a kind of synthetic lipid), showed ion-gate behavior for the permeation of Ru(bpy)(3)(2+) in the presence of perchlorate anion. There existed a threshold concentration (0.1 muM) of perchlorate anion for ion-gate opening. Below the threshold the ion-gate was closed. Above the threshold, the number of opened ion-gate sites increased with the increase of perchlorate anion concentration and leveled off at concentrations higher than 1200 muM. Based on it, a new sensor for perchlorate was developed. Furthermore, the opening and closing of the ion-gate behavior was reversible, which means the sensor can repeatedly be used.
Resumo:
The crystal of complex [Li(THF)(4)][Fe(S2C2B10H10)(2)(THF)] 3 belongs to monoclinic, space group P2(1) with a = 11.964(2), b = 16.527(3), c = 12.554(3) Angstrom,beta = 108.70(3)degrees, V= 2351.3(8) Angstrom(3), Z = 2, M-r = 835.95, D-c = 1.181 g/cm(3), mu (MoKalpha) = 5.30 cm(-1), f(000) = '874, R = 0.0622 and Rw 0.1538 for 1641 observed reflections with I > 2sigma(I). The ionic complex,of 3 contains the square pyramidal anion of [Fe(S2C2B10H10)(2)(THF)](-) and the tetrahedral cation of [Li(THF)(4)](+). The iron is 5-coordinated and located in the square pyramidal configuration. The iron atom and the four sulfur atoms are almost coplanar. The Lithium atom is coordinated with four oxygen atoms of four THF molecules and located in a tetrahedral configuration.
Resumo:
Three kinds of polymer resin supported Pd catalysts were prepared by mixing PdCl2, with alkaline styrene anion exchange resins[D392 -NH2, D382, -NHCH3, D301R, -NH(CH3)(2)], strongly alkaline styrene anion exchanged resin [201 X 7DVB, -NH+ (CH3)(3)] and alkaline epoxy exchange resin (701, -NH2), and hydrogenating in liquid phase at 1.013 X 10(5) Pa. The hydrogenation of furfural was studied under the reaction conditions such as solvent, temperature. Pd content in the supported catalyst and the amount of the catalyst. The yield of hydrogenation reaction of furfural markedly increased to 100% and the selectivity to tetrahydrofurfuryl alcohol increased to over 98% by polymer (alkaline styrene anion exchange resins D392, -NH2, D382, -NHCH3) supported palladium catalysts comparing with the yield over 70% and selectivity over 97% by palladium catalyst, in 50% alcohol-50% water or pure water solution at 1.013 X 10(5) Pa. The relationship between hydrogenation and the structures of functional group in the supporting resin was examined by XPS method.
Resumo:
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.
Resumo:
In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.
Resumo:
The title heteropoly blue, (Bu4N)(6)H-10 [(PMo11MoO40)-Mo-VI-O-V](4) . H2O has been photochemically synthesized and characterized with elemental analysis, solid diffusion reflectance electronic spectra, CV, ESR, XPS, IR spectra, conductivity measurement and X-ray single crystal analysis. The crystallographic data for C96H218Mo48N6O169P4 are as follows: M-r = 8889.76, triclinic, P (1) over bar, a = 1.4142 (3) nm, b = 2.6027 (5) nm, c = 2.6403(5) nm, alpha = 113.96(3)degrees, beta = 90.05(3)degrees, gamma = 105.71(3)degrees, V = 8.481 (3) nm(3), Z = 1, D-c = 1.741 g/cm(3), F (000) = 4264, mu = 1.798 mm(-1). The X-ray crystal structure analysis reveals that there Is one independent molecule in the unit cell of the title heteropoly blue which contains four mixed-valence heteropoly anions, six tetrabutylammonium cations and one water molecule. Its molecular structure possesses a centrosymmetrical arrangement in the unit cell. The phosphorus atom is In the crystallographic inversion center of the heteropoly anion and the eight oxygen atoms surrounding central phosphorus atom comprise of a distorted hexahedron. Heteropolyanion has two equal sets of PO4 tetrahedron. The PO4 tetrahedron and the MoO6 octahedron in the polyanion are greatly distorted.
Resumo:
The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A charge transfer salt, (Bu4N)(4) (C5H6)[(HSiMo11MoO40)-Mo-VI-O-V] has been photochemically synthesized from (Bu4N)(4)SiMo12O40 and 1.3-cyclopentadiene and Characterized, by elemental analysis, IR spectra, solid diffusion reflectance electronic spectra, CV and ESR. The X-ray crystal structure revealed that the title complex crystal data are as follows: triclinic, space group P (1) over bar, a = 14.347(3), b = 14.423(3), c = 27.158(5) Angstrom, alpha = 96.90(3), beta = 104.18(3), gamma = 98.20(3)degrees, V = 5322(2) Angstrom (3), Z = 2, M-r = 2855. 30, D-c = 1.782g.cm(-3), F(000) = 2860, R = 0.0719, wR = 0.198. The title compound is composed of 1.3-cyclopentadiene, four tetrabutylammonium and [(SiMo11MoO40)-Mo-VI-O-V](4-) anion.
Resumo:
In this paper, a new method of fabricating multilayers on a carbon substrate is presented. First, a uniformly charged carbon surface was prepared through molecular design. Then an ultrathin film consisting of layer-pairs of oppositely charged polymeric cationic poly(diallyldimethylammonium chloride) (PDDA) and silicotungstate, SiW12O404- (SiW12), was grown layer-by-layer onto the grafted carbon substrate using a molecular self-assembly technique and an electrochemical method. The technique allows one to prepare highly adherent, dense and smooth films of polyoxometalates with special properties. By combining cyclic voltammetry (CV) and X-ray (XR) reflectometry, it was determined that the average surface density of SiW12 was 2.10 x 10(-10) mol cm(-2), and the thickness increase per adsorption of PDDA-SiW12 was 1.7 +/- 0.2 nm, indicating that the amount of SiW12 anion per one layer adsorption corresponded to a monolayer coverage. Atomic force microscopy (AFM) was also used to examine the surface morphology and determine the grain size distribution and roughness for multilayer films. An increase in root-mean-square (RMS) surface roughness from 7 to 9 Angstrom was observed as the number of layer-pairs in the film increased from 2 to 6. FTIR results showed that the good stability of the multilayer films was due to Coulomb interactions between the SiW12 anion and the polymeric cations PDDA. Moreover, the multilayer films, in acidic aqueous solution, showed good electrocatalytic activity toward the reduction of NO2-, and the catalytic currents increased with increasing the layer numbers of SiW12 adsorption. These characteristics of the multilayer films might find potential applications in the field of sensors and microelectronics devices.
Resumo:
In the title compound, 3-[(3,4-dihydro-2-methyl-4-oxopyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methylthiazolium hexafluorophosphate monohydrate, C12H16N3O2S+. PF6-.H2O, oxythiamine is a monovalent cation with a neutral oxopyrimidine ring. The molecule assumes the F conformation, which is a common form for thiamine but which is substantially different from the unusual V conformation found in the chloride and hydrochloride salts of oxythiamine. The anion-bridging interaction, C-H . . . anion . . . pyrimidine, is emphasized as being important for stabilization of the F conformation.
Resumo:
A new molybdenum-citrato cluster containing [Mo2O2(mu-S)(2)(C6H5O7)(C6H4O7)](5-) anion was synthesized and characterized by elemental analysis, IR, UV-Vis spectra, XPS and X-ray diffraction. The parameters of the crystal structure of the compound are monoclinic, space group P2(1)/c, a = 2. 376 6(5) nm, b = 1. 327 4(3) nm, c = 2. 247 1(5) nm, beta = 118. 21 degrees, V = 6. 247(2) nm(3), Z = 8, D-c = 2. 128 g/cm(3), F(000) = 3 984, mu = 1 694 cm(-1), R = 0. 083 1 and R-2,R-w = 0. 154 9. The anion is binuclear molybdenum-citrato complex with mu(2)-S bridge. Each molybdenum atom pocesesses a distorted octahedral struture, which is coordinated with a terminal oxygen, two sulfur atoms, three oxygen atoms of hydroxyl, alpha-carboxylate, beta-carboxylate from citrate.
Resumo:
A new type of silicomolybdate-methylsilicate-graphite composite material was prepared by the sol-gel technique and used for the fabrication of an amperometric nitrite sensor. The silicomolybdic anion acts as a catalyst, the graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry, square-wave voltammetry and chronoamperometry were employed to characterize the sensor. The amperometric nitrite sensor exhibited a series of good properties: high sensitivity (1.771 mu A mmol(-1) dm(3)), a short response time (7 s), remarkable long-term stability and especially reproducibility of surface renewal in the event of electrode surface fouling.