939 resultados para Animal Nutritional Physiological Phenomena
Resumo:
The time-courses of orthographic, phonological and semantic processing of Chinese characters were investigated systematically with multi-channel event-related potentials (ERPs). New evidences concerning whether phonology or semantics is processed first and whether phonology mediates semantic access were obtained, supporting and developing the new concept of repetition, overlapping, and alternating processing in Chinese character recognition. Statistic parameter mapping based on physiological double dissociation has been developed. Seven experiments were conducted: I) deciding which type of structure, left-right or non-left-right, the character displayed on the screen was; 2) deciding whether or not there was a vowel/a/in the pronunciation of the character; 3) deciding which classification, natural object or non-natural object, the character was; 4) deciding which color, red or green, the character was; 5) deciding which color, red or green, the non-character was; 6) fixing on the non-character; 7) fixing on the crosslet. The main results are: 1. N240 and P240:N240 and P240 localized at occipital and prefrontal respectively were found in experiments 1, 2, 3, and 4, but not in experiments 5, 6, or 7. The difference between the former 4 and the latter 3 experiments was only their stimuli: the former's were true Chinese characters while the latter's were non-characters or crosslet. Thus Chinese characters were related to these two components, which reflected unique processing of Chinese characters peaking at about 240 msec. 2. Basic visual feature analysis: In comparison with experiment 7 there was a common cognitive process in experiments 1, 2, 4, and 6 - basic visual feature analysis. The corresponding ERP amplitude increase in most sites started from about 60 msec. 3. Orthography: The ERP differences located at the main processing area of orthography (occipital) between experiments 1, 2, 3, 4 and experiment 5 started from about 130 msec. This was the category difference between Chinese characters and non-characters, which revealed that orthographic processing started from about 130 msec. The ERP differences between the experiments 1, 2, 3 and the experiment 4 occurred in 210-250, 230-240, and 190-250 msec respectively, suggesting orthography was processed again. These were the differences between language and non-language tasks, which revealed a higher level processing than that in the above mentioned 130 msec. All the phenomena imply that the orthographic processing does not finished in one time of processing; the second time of processing is not a simple repetition, but a higher level one. 4. Phonology: The ERPs of experiment 2 (phonological task) were significantly stronger than those of experiment 3 (semantic task) at the main processing areas of phonology (temporal and left prefrontal) starting from about 270 msec, which revealed phonologic processing. The ERP differences at left frontal between experiment 2 and experiment 1 (orthographic task) started from about 250 msec. When comparing phonological task with experiment 4 (character color decision), the ERP differences at left temporal and prefrontal started from about 220 msec. Thus phonological processing may start before 220 msec. 5. Semantic: The ERPs of experiment 3 (semantic task) were significantly stronger than those of experiment 2 (phonological task) at the main processing areas of semantics (parietal and occipital) starting from about 290 msec, which revealed semantic processing. The ERP differences at these areas between experiment 3 and experiment 4 (character color decision) started from about 270 msec. The ERP differences between experiment 3 and experiment 1 (orthographic task) started from about 260 msec. Thus semantic processing may start before 260 msec. 6. Overlapping of phonological and semantic processing: From about 270 to 350 msec, the ERPs of experiment 2 (phonological task) were significantly larger than those of experiment 3 (semantic task) at the main processing areas of phonology (temporal and left prefrontal); while from about 290-360 msec, the ERPs of experiment 3 were significantly larger than those of experiment 2 at the main processing areas of semantics (frontal, parietal, and occipital). Thus phonological processing may start earlier than semantic and their time-courses may alternate, which reveals parallel processing. 7. Semantic processing needs part phonology: When experiment 1 (orthographic task) served as baseline, the ERPs of experiment 2 and 3 (phonological and semantic tasks) significantly increased at the main processing areas of phonology (left temporal and frontal) starting from about 250 msec. The ERPs of experiment 3, besides, increased significantly at the main processing areas of semantics (parietal and frontal) starting from about 260 msec. When experiment 4 (character color decision) served as baseline, the ERPs of experiment 2 and 3 significantly increased at phonological areas (left temporal and frontal) starting from about 220 msec. The ERPs of experiment 3, similarly, increased significantly at semantic areas (parietal and frontal) starting from about270 msec. Hence, before semantic processing, a part of phonological information may be required. The conclusion could be got from above results in the present experimental conditions: 1. The basic visual feature processing starts from about 60 msec; 2. Orthographic processing starts from about 130 msec, and repeats at about 240 msec. The second processing is not simple repetition of the first one, but a higher level processing; 3. Phonological processing begins earlier than semantic, and their time-courses overlap; 4. Before semantic processing, a part of phonological information may be required; 5. The repetition, overlapping, and alternating of the orthographic, phonological and semantic processing of Chinese characters could exist in cognition. Thus the problem of whether phonology mediates semantics access is not a simple, but a complicated issue.
Resumo:
Os programas de colonização na Amazônia tem chamado atenção de cientistas, autoridades e ambientalistas para o impacto ambiental causado por desmatamentos e queimadas na faixa de fronteira agrícola. O extrativismo vegetal tem sido merecedor de grande atenção por parte destes grupos, mas pouca ênfase tem sido dada ao extrativismo animal. A forma como este é praticado pelas populações ribeirinhas, indígenas e de seringueiros já foi objeto de alguns estudos; porém, os conhecimentos disponíveis sobre extrativismo animal em projeto de colonização em área de fronteira agrícola são inexistentes. Se, o extrativismo animal é pouco conhecido é ainda menos estudado e monitorado quanto ao impacto que exerce sobre a composição e estrutura dos povoamentos e populações faunísticas. Este tópico merece uma avaliação criteriosa, pois a caça é uma atividade tradicional na vida das populações rurais brasileiras, destinando-se principalmente à subsistência das mesmas. Em áreas de fronteira agrícola, onde aproximadamente 70% dos colonos são originários de outros ecossistemas, pouco se sabe sobre o extrativismo animal por eles praticados. Este estudo investigou a utilização dos recursos cinegéticos amazônicos por estes colonos e o impacto que estas atividades causam na fauna amazônica. O município escolhido foi Machadinho d´Oeste, em Rondônia, implantado por um projeto de colonização elaborado pelo INCRA e financiado pelo BANCO MUNDIAL, e que, até 1980, possuía sua área toda florestada e intacta. Hoje, cerca de 20 anos após, tem uma interface agrícola e fauna silvestre , com inter-relações específicas, pouco conhecidas e avaliadas. O conhecimento dessas relações possibilita a adoção de medidas corretas para o monitoramento destas áreas que têm estendido suas fronteiras nos últimos anos.
Resumo:
2004
Resumo:
2006
Resumo:
2006
Resumo:
In the present work, Nafion (R) membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion (R)-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using membrane gets higher as ethanol solution gas chromatography analysis. The experimental results show that the swelling degree of Nafion (R) concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
2004
Resumo:
A suposição de que prováveis deficiências de elementos minerais nas pastagens de terra firme do Estado do Amazonas estivessem relacionadas com o denominado "mal de secar", doença que ocorre em bovinos, oportunizou a realização do presente trabalho.
Resumo:
A inviabilidade economica da ensilagem de milho na regiao dos cerrados, devido aos custos muito elevados de insumos necessarios para a sua producao, leva os pecuaristas a ensilar outras forragens. Durante as forragens mais empregadas para ensilagem na regiao, destaca-se o capim-elefante (Pennisetum pupureum Shum) por ser uma graminea de porte grande, de boa producao de massa verde por hectare e bem difundida no meio rural.
Resumo:
1984
Resumo:
2008
Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristics.
Resumo:
With the goal of developing and characterizing the nutritional and sensory aspects of fresh pasta supplemented with tilapia protein concentrate, four types of pasta were prepared, with inclusion of 0, 10, 20, or 30% of tilapia protein concentrate. Linear effects were observed (P < 0.01) in crude protein, total lipids, ash, carbohydrate, and caloric values; these parameters increased with increasing amounts of tilapia protein concentrate in the pasta. The concentration of Na, P, Ca, Mg, and Zn increased linearly (P < 0.01) in correlation with the increase in protein concentrate content, while Fe content decreased linearly (P < 0.01). In the sensory analysis, texture, overall impression, and the acceptance index demonstrated a cubic regression (P < 0.05), with the inclusion of 20% protein concentrate yielding the best scores. Including up to 30% of tilapia protein concentrate in pasta yields an increased nutritional value, but based on the sensory results, 20% of tilapia protein concentrate in pasta is the recommended maximum level.
Resumo:
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.