925 resultados para Android Monitor Porting Interfaccia Wireless WiFi kernel Android-SDk Android-NDK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel data-delivery method for delay-sensitive traffic that significantly reduces the energy consumption in wireless sensor networks without reducing the number of packets that meet end-to-end real-time deadlines. The proposed method, referred to as SensiQoS, leverages the spatial and temporal correlation between the data generated by events in a sensor network and realizes energy savings through application-specific in-network aggregation of the data. SensiQoS maximizes energy savings by adaptively waiting for packets from upstream nodes to perform in-network processing without missing the real-time deadline for the data packets. SensiQoS is a distributed packet scheduling scheme, where nodes make localized decisions on when to schedule a packet for transmission to meet its end-to-end real-time deadline and to which neighbor they should forward the packet to save energy. We also present a localized algorithm for nodes to adapt to network traffic to maximize energy savings in the network. Simulation results show that SensiQoS improves the energy savings in sensor networks where events are sensed by multiple nodes, and spatial and/or temporal correlation exists among the data packets. Energy savings due to SensiQoS increase with increase in the density of the sensor nodes and the size of the sensed events. © 2010 Harshavardhan Sabbineni and Krishnendu Chakrabarty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio. © 2011 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitsubishi Electric Research Laboratories, USA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts were made to measure the fraction of elemental carbon (EC) in ultrafine aerosol by modifying an Ambient Carbonaceous Particulate Monitor (ACPM, R&P 5400). The main modification consisted in placing a quartz filter in one of the sampling lines of this dual-channel instrument. With the filter all aerosol and EC contained in it is collected, while in the other line of the instrument the standard impactor samples only particles larger than 0.14 μm. The fraction of EC in particles smaller than 0.14 μm is derived from the difference in concentration as measured via the two sampling lines. Measurements with the modified instrument were made at a suburban site in Amsterdam, The Netherlands. An apparent adsorption artefact, which could not be eliminated by the use of denuders, precluded meaningful evaluation of the data for total carbon. Blanks in the measurements of EC were negligible and the EC data were hence further evaluated. We found that the concentration of EC obtained via the channel with the impactor was systematically lower than that in the filter-line. The average ratio of the concentrations was close to 0.6, which indicates that approximately 40% of the EC was in particles smaller than 0.14 μm. Alternative explanations for the difference in the concentration in the two sampling lines could be excluded, such as a difference in the extent of oxidation. This should be a function of loading, which is not the case. Another reason for the difference could be that less material is collected by the impactor due to rebound, but such bounce of aerosol is very unlikely in The Netherlands due to co-deposition of abundant deliquesced and thus viscous ammonium compounds. The conclusion is that a further modification to assess the true fraction of ultrafine EC, by installing an impactor with cut-off diameter at 0.1 μm, would be worth pursuing. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 IEEE.We consider a wireless control architecture with multiple control loops over a shared wireless medium. A scheduler observes the random channel conditions that each control system experiences over the shared medium and opportunistically selects systems to transmit at a set of non-overlapping frequencies. The transmit power of each system also adapts to channel conditions and determines the probability of successfully receiving and closing the loop. We formulate the optimal design of channel-aware scheduling and power allocation that minimize the total power consumption while meeting control performance requirements for all systems. In particular, it is required that for each control system a given Lyapunov function decreases at a specified rate in expectation over the random channel conditions. We develop an offline algorithm to find the optimal communication design, as well as an online protocol which selects scheduling and power variables based on a random observed channel sequence and converges almost surely to the optimal operating point. Simulations illustrate the power savings of our approach compared to other non-channel-aware schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a protocol for dynamically configuring wireless sensor nodes into logical clusters. The concept is to be able to inject an overlay configuration into an ad-hoc network of sensor nodes or similar devices, and have the network configure itself organically. The devices are arbitrarily deployed and have initially have no information whatsoever concerning physical location, topology, density or neighbourhood. The Emergent Cluster Overlay (ECO) protocol is totally self-configuring and has several novel features, including nodes self-determining their mobility based on patterns of neighbour discovery, and that the target cluster size is specified externally (by the sensor network application) and is not directly coupled to radio communication range or node packing density. Cluster head nodes are automatically assigned as part of the cluster configuration process, at no additional cost. ECO is ideally suited to applications of wireless sensor networks in which localized groups of sensors act cooperatively to provide a service. This includes situations where service dilution is used (dynamically identifying redundant nodes to conserve their resources).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the generic attacks and countermeasures for block cipher based message authentication code algorithms (MAC) in sensor applications is undertaken; the conclusions are used in the design of two new MAC constructs Quicker Block Chaining MAC1 (QBC-MAC1) and Quicker Block Chaining MAC2 (QBC-MAC2). Using software simulation we show that our new constructs point to improvements in usage of CPU instruction clock cycle and energy requirement when benchmarked against the de facto Cipher Block Chaining MAC (CBC-MAC) based construct used in the TinySec security protocol for wireless sensor networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.