999 resultados para American Physical Society


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study dynamical aspects of the two-dimensional (2D) gonihedric spin model using both numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a parameter ¿. The ¿=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does not have critical behavior. We have found that allowing for ¿¿0 does not lead to critical behavior either. Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a careful analysis of dynamical observables reveals nonglassy evolution (unlike its 3D counterpart). We find, also in this ¿=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a mean field model that describes the effect of multiplicative noise in spatially extended systems. The model can be solved analytically. For the case of the phi4 potential it predicts that the phase transition is shifted. This conclusion is supported by numerical simulations of this model in two dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remarkable differences in the shape of the nematic-smectic-B interface in a quasi-two-dimensional geometry have been experimentally observed in three liquid crystals of very similar molecular structure, i.e., neighboring members of a homologous series. In the thermal equilibrium of the two mesophases a faceted rectanglelike shape was observed with considerably different shape anisotropies for the three homologs. Various morphologies such as dendritic, dendriticlike, and faceted shapes of the rapidly growing smectic-B germ were also observed for the three substances. Experimental results were compared with computer simulations based on the phase field model. The pattern forming behavior of a binary mixture of two homologs was also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time, and correlation length appear explicitly. The different effects of these parameters are discussed for the Ginzburg-Landau and Schlögl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the evaporation of periodic arrays of initially equal droplets in two-dimensional systems with open (absorbing) boundaries. Our study is based on the numerical solution of the Cahn-Hilliard equation. We show that due to cooperative effects the droplets which are further from the boundary may evaporate earlier than those in the boundary¿s vicinity. The time evolution of the overall amount of matter in the system is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherence resonance occurring in semiconductor lasers with optical feedback is studied via the Lang-Kobayashi model with external nonwhite noise in the pumping current. The temporal correlation and the amplitude of the noise have a highly relevant influence in the system, leading to an optimal coherent response for suitable values of both the noise amplitude and correlation time. This phenomenon is quantitatively characterized by means of several statistical measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate numerically the scattering of a moving discrete breather on a pair of junctions in a Fermi-Pasta-Ulam chain. These junctions delimit an extended region with different masses of the particles. We consider (i) a rectangular trap, (ii) a wedge shaped trap, and (iii) a smoothly varying convex or concave mass profile. All three cases lead to DB confinement, with the ease of trapping depending on the profile of the trap. We also study the collision and trapping of two DBs within the profile as a function of trap width, shape, and approach time at the two junctions. The latter controls whether one or both DBs are trapped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scaling properties of the rough liquid-air interface formed in the spontaneous imbibition of a viscous liquid by a model porous medium are found to be very sensitive to the magnitude of the pressure difference applied at the liquid inlet. Interface fluctuations change from obeying intrinsic anomalous scaling at large negative pressure differences, to being super-rough with the same dynamic exponent z¿3 at less negative pressure differences, to finally obeying ordinary Family-Vicsek scaling with z¿2 at large positive pressure differences. This rich scenario reflects the relative importance on different length scales of capillary and permeability disorder, and the role of surface tension and viscous pressure in damping interface fluctuations.