918 resultados para Aldose Reductase Inhibitor
Resumo:
Activation of muscle-specific genes by members of the myocyte enhancer factor 2 (MEF2) and MyoD families of transcription factors is coupled to histone acetylation and is inhibited by class II histone deacetylases (HDACs) 4 and 5, which interact with MEF2. The ability of HDAC4 and -5 to inhibit MEF2 is blocked by phosphorylation of these HDACs at two conserved serine residues, which creates docking sites for the intracellular chaperone protein 14-3-3. When bound to 14-3-3, HDACs are released from MEF2 and transported to the cytoplasm, thereby allowing MEF2 to stimulate muscle-specific gene expression. MEF2-interacting transcription repressor (MITR) shares homology with the amino-terminal regions of HDAC4 and -5, but lacks an HDAC catalytic domain. Despite the absence of intrinsic HDAC activity, MITR acts as a potent inhibitor of MEF2-dependent transcription. Paradoxically, however, MITR has minimal inhibitory effects on the skeletal muscle differentiation program. We show that a substitution mutant of MITR containing alanine in place of two serine residues, Ser-218 and Ser-448, acts as a potent repressor of myogenesis. Our findings indicate that promyogenic signals antagonize the inhibitory action of MITR by targeting these serines for phosphorylation. Phosphorylation of Ser-218 and Ser-448 stimulates binding of 14-3-3 to MITR, disrupts MEF2:MITR interactions, and alters the nuclear distribution of MITR. These results reveal a role for MITR as a signal-dependent regulator of muscle differentiation.
Resumo:
The reduction of 12-oxophytodienoic acid (OPDA) to 3-oxo-2(2′[Z]-pentenyl)-cyclopentane-1-octanoic acid is catalyzed by 12-oxophytodienoate-10,11-reductase (OPR). Analysis of the isomer preference of OPR has indicated that the activity is composed of two isoenzymes exhibiting different stereoselectivities. The two isoforms of OPR have been separated, using protein extracts of Rock Harlequin (Corydalis sempervirens) as the starting material. OPRI, the enzyme reported earlier from the same species and corresponding to the cloned OPR from Arabidopsis, utilized 9R,13R-OPDA >> 9S,13R-OPDA but not the 13S-configured isomers, whereas the new activity, OPRII, effectively reduced all four OPDA isomers, including the natural 9S,13S-OPDA (cis-[+]-OPDA). OPRII activity is characterized in detail. The enzyme's enzymatic, biochemical, and immunological properties prove that it is a close relative of OPRI. The roles of OPRI and OPRII in octadecanoid biology are discussed.
Resumo:
The inactivation of phosphorylated nitrate reductase (NR) by the binding of 14-3-3 proteins is one of a very few unambiguous biological functions for 14-3-3 proteins. We report here that serine and threonine residues at the +6 to +8 positions, relative to the known regulatory binding site involving serine-543, are important in the interaction with GF14ω, a recombinant plant 14-3-3. Also shown is that an increase in ionic strength with KCl or inorganic phosphate, known physical effectors of NR activity, directly disrupts the binding of protein and peptide ligands to 14-3-3 proteins. Increased ionic strength attributable to KCl caused a change in conformation of GF14ω, resulting in reduced surface hydrophobicity, as visualized with a fluorescent probe. Similarly, it is shown that the 5′ isomer of AMP was specifically able to disrupt the inactive phosphorylated NR:14-3-3 complex. Using the 5′-AMP fluorescent analog trinitrophenyl-AMP, we show that there is a probable AMP-binding site on GF14ω.
Resumo:
This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.
Resumo:
Overnight low-temperature exposure inhibits photosynthesis in chilling-sensitive species such as tomato (Lycopersicon esculentum) and cucumber by as much as 60%. In an earlier study we showed that one intriguing effect of low temperature on chilling-sensitive plants is to stall the endogenous rhythm controlling transcription of certain nuclear-encoded genes, causing the synthesis of the corresponding transcripts and proteins to be mistimed when the plant is rewarmed. Here we show that the circadian rhythm controlling the activity of sucrose phosphate synthase (SPS) and nitrate reductase (NR), key control points of carbon and nitrogen metabolism in plant cells, is delayed in tomato by chilling treatments. Using specific protein kinase and phosphatase inhibitors, we further demonstrate that the chilling-induced delay in the circadian control of SPS and NR activity is associated with the activity of critical protein phosphatases. The sensitivity of the pattern of SPS activity to specific inhibitors of transcription and translation indicates that there is a chilling-induced delay in SPS phosphorylation status that is caused by an effect of low temperature on the expression of a gene coding for a phosphoprotein phosphatase, perhaps the SPS phosphatase. In contrast, the chilling-induced delay in NR activity does not appear to arise from effects on NR phosphorylation status, but rather from direct effects on NR expression. It is likely that the mistiming in the regulation of SPS and NR, and perhaps other key metabolic enzymes under circadian regulation, underlies the chilling sensitivity of photosynthesis in these plant species.
Resumo:
A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins.
Resumo:
Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit.
Resumo:
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.
Resumo:
Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings grown in soil in which cytokinin was applied directly to the leaves. About the same level of induction was seen in both wild-type and Nia2-deletion mutants, indicating that increased NR activity is related to the expression of the minor NR gene, Nia1. The steady-state Nia1 mRNA level was increased severalfold in both wild-type and mutant seedlings after benzyladenine treatment. Transcript levels of the Nia2 gene, which is responsible for 90% of the NR activity in developing wild-type seedlings, did not show any changes upon cytokinin treatment. Nuclear run-on assays demonstrated that Nia1 gene transcription increased dramatically after cytokinin treatment.
Resumo:
We have produced and analyzed transgenic birdsfoot trefoil (Lotus corniculatus L.) plants harboring antisense dihydroflavonol reductase (AS-DFR) sequences. In initial experiments the effect of introducing three different antisense Antirrhinum majus L. DFR constructs into a single recipient genotype (S50) was assessed. There were no obvious effects on plant biomass, but levels of condensed tannins showed a statistical reduction in leaf, stem, and root tissues of some of the antisense lines. Transformation events were also found, which resulted in increased levels of condensed tannins. In subsequent experiments a detailed study of AS-DFR phenotypes was carried out in genotype S33 using pMAJ2 (an antisense construct comprising the 5′ half of the A. majus cDNA). In this case, reduced tannin levels were found in leaf and stem tissues and in juvenile shoot tissues. Analysis of soluble flavonoids and isoflavonoids in tannin down-regulated shoot tissues indicated few obvious default products. When two S33 AS-DFR lines were outcrossed, there was an underrepresentation of transgene sequences in progeny plants and no examples of inheritance of an antisense phenotype were observed. To our knowledge, this is the first report of the genetic manipulation of condensed tannin biosynthesis in higher plants.
Resumo:
To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.
Resumo:
In C3 plants large amounts of photorespiratory glycine (Gly) are converted to serine by the tetrahydrofolate (THF)-dependent activities of the Gly decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT). Using 13C nuclear magnetic resonance, we monitored the flux of carbon through the GDC/SHMT enzyme system in Arabidopsis thaliana (L.) Heynh. Columbia exposed to inhibitors of THF-synthesizing enzymes. Plants exposed for 96 h to sulfanilamide, a dihydropteroate synthase inhibitor, showed little reduction in flux through GDC/SHMT. Two other sulfonamide analogs were tested with similar results, although all three analogs competitively inhibited the partially purified enzyme. However, methotrexate or aminopterin, which are confirmed inhibitors of Arabidopsis dihydrofolate reductase, decreased the flux through the GDC/SHMT system by 60% after 48 h and by 100% in 96 h. The uptake of [α-13C]Gly was not inhibited by either drug class. The specificity of methotrexate action was shown by the ability of 5-formyl-THF to restore flux through the GDC/SHMT pathway in methotrexate-inhibited plants. The experiments with sulfonamides strongly suggest that the mitochondrial THF pool has a long half-life. The studies with methotrexate support the additional, critical role of dihydrofolate reductase in recycling THF oxidized in thymidylate synthesis.
Resumo:
The aim of this study was to investigate the interactions between cytokinin, sugar repression, and light in the senescence-related decline in photosynthetic enzymes of leaves. In transgenic tobacco (Nicotiana tabacum) plants that induce the production of cytokinin in senescing tissue, the age-dependent decline in NADH-dependent hydroxypyruvate reductase (HPR), ribulose-1,5-bisphosphate carboxylase/oxygenase, and other enzymes involved in photosynthetic metabolism was delayed but not prevented. Glucose (Glc) and fructose contents increased with leaf age in wild-type tobacco and, to a greater extent, in transgenic tobacco. To study whether sugar accumulation in senescing leaves can counteract the effect of cytokinin on senescence, discs of wild-type leaves were incubated with Glc and cytokinin solutions. The photorespiratory enzyme HPR declined rapidly in the presence of 20 mm Glc, especially at very low photon flux density. Although HPR protein was increased in the presence of cytokinin, cytokinin did not prevent the Glc-dependent decline. Illumination at moderate photon flux density resulted in the rapid synthesis of HPR and partially prevented the negative effect of Glc. Similar results were obtained for the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. It is concluded that sugars, cytokinin, and light interact during senescence by influencing the decline in proteins involved in photosynthetic metabolism.
Resumo:
We have investigated two NADPH-cytochrome (Cyt) P450 reductase isoforms encoded by separate genes (AR1 and AR2) in Arabidopsis thaliana. We isolated AR1 and AR2 cDNAs using a mung bean (Phaseolus aureus L.) NADPH-Cyt P450 reductase cDNA as a probe. The recombinant AR1 and AR2 proteins produced using a baculovirus expression system showed similar Km values for Cyt c and NADPH, respectively. In the reconstitution system with a recombinant cinnamate 4-hydroxylase (CYP73A5), the recombinant AR1 and AR2 proteins gave the same level of cinnamate 4-hydroxylase activity (about 70 nmol min−1 nmol−1 P450). The AR2 gene expression was transiently induced by 4- and 3-fold within 1 h of wounding and light treatments, respectively, and the induction time course preceded those of CYP73A5 and a phenylalanine ammonia-lyase (PAL1) gene. On the contrary, the AR1 expression level did not change during the treatments. Analysis of the AR1 and AR2 gene structure revealed that only the AR2 promoter contained three putative sequence motifs (boxes P, A, and L), which are involved in the coordinated expression of CYP73A5 and other phenylpropanoid pathway genes. These results suggest the possibility that AR2 transcription may be functionally linked to the induced levels of phenylpropanoid pathway enzymes.
Resumo:
We have identified a human cytomegalovirus cell-death suppressor, denoted vICA, encoded by the viral UL36 gene. vICA inhibits Fas-mediated apoptosis by binding to the pro-domain of caspase-8 and preventing its activation. vICA does not share significant sequence homology with FLIPs or other known suppressors of apoptosis, suggesting that this protein represents a new class of cell-death suppressors. Notably, resistance to Fas-mediated apoptosis is delayed in fibroblasts infected with viruses that encode mutant vICA, suggesting that vICA suppresses death-receptor-induced cell death in the context of viral infection. Although vICA is dispensable for viral replication in vitro, the common targeting of caspase-8 activation by diverse herpesviruses argues for an important role for this antiapoptotic mechanism in the pathogenesis of viral infection in the host, most likely in avoiding immune clearance by cytotoxic lymphocytes and natural killer cells.