994 resultados para Air Pollutants
Resumo:
IPLV overall coefficient, presented by Air-Conditioning and Refrigeration Institute (ARI) of America, shows running/operation status of air-conditioning system host only. For overall operation coefficient, logical solution has not been developed, to reflect the whole air-conditioning system under part load. In this research undertaking, the running time proportions of air-conditioning systems under part load have been obtained through analysis on energy consumption data during practical operation in all public buildings in Chongqing. This was achieved by using analysis methods, based on the statistical energy consumption data distribution of public buildings month-by-month. Comparing with the weight number of IPLV, part load operation coefficient of air-conditioning system, based on this research, does not only show the status of system refrigerating host, but also reflects and calculate energy efficiency of the whole air-conditioning system. The coefficient results from the processing and analyzing of practical running data, shows the practical running status of area and building type (actual and objective) not clear. The method is different from model analysis which gets IPLV weight number, in the sense that this method of coefficient results in both four equal proportions and also part load operation coefficient of air-conditioning system under any load rate as necessary.
Resumo:
The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT), a Lagrangian chemistry model, has been evaluated using atmospheric chemical measurements collected during the East Atlantic Summer Experiment 1996 (EASE '96). This field campaign was part of the UK Natural Environment Research Council's (NERC) Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) programme, conducted at Mace Head, Republic of Ireland, during July and August 1996. The model includes a description of gas-phase tropospheric chemistry, and simple parameterisations for surface deposition, mixing from the free troposphere and emissions. The model generally compares well with the measurements and is used to study the production and loss of O3 under a variety of conditions. The mean difference between the hourly O3 concentrations calculated by the model and those measured is 0.6 ppbv with a standard deviation of 8.7 ppbv. Three specific air-flow regimes were identified during the campaign westerly, anticyclonic (easterly) and south westerly. The westerly flow is typical of background conditions for Mace Head. However, on some occasions there was evidence of long-range transport of pollutants from North America. In periods of anticyclonic flow, air parcels had collected emissions of NOx and VOCs immediately before arriving at Mace Head, leading to O3 production. The level of calculated O3 depends critically on the precise details of the trajectory, and hence on the emissions into the air parcel. In several periods of south westerly flow, low concentrations of O3 were measured which were consistent with deposition and photochemical destruction inside the tropical marine boundary layer.
Resumo:
Observations of a chemical at a point in the atmosphere typically show sudden transitions between episodes of high and low concentration. Often these are associated with a rapid change in the origin of air arriving at the site. Lagrangian chemical models riding along trajectories can reproduce such transitions, but small timing errors from trajectory phase errors dramatically reduce the correlation between modeled concentrations and observations. Here the origin averaging technique is introduced to obtain maps of average concentration as a function of air mass origin for the East Atlantic Summer Experiment 1996 (EASE96, a ground-based chemistry campaign). These maps are used to construct origin averaged time series which enable comparison between a chemistry model and observations with phase errors factored out. The amount of the observed signal explained by trajectory changes can be quantified, as can the systematic model errors as a function of air mass origin. The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT) can account for over 70% of the observed ozone signal variance during EASE96 when phase errors are side-stepped by origin averaging. The dramatic increase in correlation (from 23% without averaging) cannot be achieved by time averaging. The success of the model is attributed to the strong relationship between changes in ozone along trajectories and their origin and its ability to simulate those changes. The model performs less well for longer-lived chemical constituents because the initial conditions 5 days before arrival are insufficiently well known.
Resumo:
The new HadKPP atmosphereocean coupled model is described and then used to determine the effects of sub-daily airsea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 3050 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved airsea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of airsea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.
Resumo:
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.
Resumo:
This article addresses the need for providing good standards of indoor air quality (IAQ) in buildings from the view point of health, well-being and productivity of building occupants. It briefly outlines the role of ventilation in achieving the required IAQ targets and discusses the performance of different types of ventilation systems in use. As a result of new energy efficiency directives and legislations in Europe and elsewhere, the ventilation energy component of HVAC systems has increased in relative terms and this article introduces a method for evaluating the performance air distribution systems that is based on ventilation and energy effectiveness. A range of ventilation systems are discussed, including mechanical and natural ventilation, and results for more recently developed mechanical air distribution systems are compared with conventional systems. The article provides an assessment and comparison of some of these systems with reference to ventilation performance and energy efficiency
Resumo:
Synoptic-scale air flow variability over the United Kingdom is measured on a daily time scale by following previous work to define 3 indices: geostrophic flow strength, vorticity and direction. Comparing the observed distribution of air flow index values with those determined from a simulation with the Hadley Centres global climate model (HadCM2) identifies some minor systematic biases in the models synoptic circulation but demonstrates that the major features are well simulated. The relationship between temperature and precipitation from parts of the United Kingdom and these air flow indices (either singly or in pairs) is found to be very similar in both the observations and model output; indeed the simulated and observed precipitation relationships are found to be almost interchangeable in a quantitative sense. These encouraging results imply that some reliability can be assumed for single grid-box and regional output from this climate model; this applies only to those grid boxes evaluated here (which do not have high or complex orography), only to the portion of variability that is controlled by synoptic air flow variations, and only to those surface variables considered here (temperature and precipitation).
Resumo:
This review assesses the impacts, both direct and indirect, of man-made changes to the composition of the air over a 200 year period on the severity of arable crop disease epidemics. The review focuses on two well-studied UK arable crops,wheat and oilseed rape, relating these examples to worldwide food security. In wheat, impacts of changes in concentrations of SO2 in air on two septoria diseases are discussed using data obtained from historical crop samples and unpublished experimental work. Changes in SO2 seem to alter septoria disease spectra both through direct effects on infection processes and through indirect effects on soil S status. Work on the oilseed rape diseases phoma stem canker and light leaf spot illustrates indirect impacts of increasing concentrations of greenhouse gases, mediated through climate change. It is projected that, by the 2050s, if diseases are not controlled, climate change will increase yields in Scotland but halve yields in southern England. These projections are discussed in relation to strategies for adaptation to environmental change. Since many strategies take1015 years to implement, it is important to take appropriate decisions soon. Furthermore, it is essential to make appropriate investment in collation of long-term data, modelling and experimental work to guide such decision-making by industry and government, as a contribution to worldwide food security.
Resumo:
OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an interdisciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to trafc emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benets include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.
Resumo:
Leaf expansion in the fast-growing tree,Populus euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 03) and late (LPI, 68) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment. Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of dilution following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively. Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2. These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.