971 resultados para Agricultural and Biological Sciences(all)
Resumo:
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280-400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2-enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV-absorptivity increased under the highpCO2/low pH condition. Nevertheless, UV-induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2-acidified seawater, suggesting that the calcified layer played a UV-protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5-2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.
Resumo:
Ocean acidification, which like global warming is an outcome of anthropogenic CO2emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 µatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth ofAmphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.
Resumo:
Anthropogenic elevation of atmospheric pCO2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO3] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO2-induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO2, yielding average aragonite saturation states (Omega aragonite) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137Ba/138Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in Omega aragonite from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under Omega aragonite = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each Omega aragonite discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO3, as the oceans acidify. The corals' nonlinear response to reduced Omega aragonite and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO3] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to Omega aragonite= 0.8 indicates that their response to future pCO2-induced ocean acidification could be both abrupt and severe once the critical Omega aragoniteis reached.
Resumo:
An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (?0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results.
Seawater carbonate chemistry and biological parameters of Sepia officinalis during experiments, 2009
Resumo:
Low pO2 values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no measurements of PVF pCO2 so far. This is surprising, as elevated pCO2 could also constitute a major abiotic stressor for the developing embryo. As a first attempt to fill this gap in knowledge, we measured pO2, pCO2 and pH in the PVF of late cephalopod (Sepia officinalis) eggs. We found linear relationships between embryo wet mass and pO2, pCO2 and pH. pO2 declined from >12 kPa to less than 5 kPa, while pCO2 increased from 0.13 to 0.41 kPa. In the absence of active accumulation of bicarbonate in the PVF, pH decreased from 7.7 to 7.2. Our study supports the idea that oxygen becomes limiting in cephalopod eggs towards the end of development; however, pCO2 and pH shift to levels that have caused significant physiological disturbances in other marine ectothermic animals. Future research needs to address the physiological adaptations that enable the embryo to cope with the adverse abiotic conditions in their egg environment.
Resumo:
With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e. the manipulation of total alkalinity (TA) or total dissolved inorganic carbon (DIC), have been discussed. While Langer et al. (2009) demonstrate a high degree of intra-specific variability between strains of E. huxleyi, the question whether different CO2 manipulation methods influence the cellular responses has not been resolved yet. In this study, closed TA as well as open and closed DIC manipulation methods were compared with respect to E. huxleyi's CO2-dependence in growth rate, POC- and PIC-production. The differences in the carbonate chemistry between TA and DIC manipulations were shown not to cause any differences in response patterns, while the latter differed between open and closed DIC manipulation. The two strains investigated showed different sensitivities to acidification of seawater, RCC1256 being more negatively affected in growth rates and PIC production than NZEH.
Resumo:
Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connecting and sustaining existing populations and colonizing new habitats. Calcified larvae are typically denser than seawater and rely on swimming to navigate vertically structured water columns. Larval sand dollars Dendraster excentricus have calcified skeletal rods supporting their bodies, and propel themselves with ciliated bands looped around projections called arms. Ciliated bands are also used in food capture, and filtration rate is correlated with band length. As a result, swimming and feeding performance are highly sensitive to morphological changes. When reared at an elevated PCO2 level (1000 ppm), larval sand dollars developed significantly narrower bodies at four and six-arm stages. Morphological changes also varied between four observed maternal lineages, suggesting within-population variation in sensitivity to changes in PCO2 level. Despite these morphological changes, PCO2 concentration alone had no significant effect on swimming speeds. However, acidified larvae had significantly smaller larval stomachs and bodies, suggesting reduced feeding performance. Adjustments to larval morphologies in response to ocean acidification may prioritize swimming over feeding, implying that negative consequences of ocean acidification are carried over to later developmental stages.
Resumo:
Increased atmospheric CO2 concentrations are causing greater dissolution of CO2 into seawater, and are ultimately responsible for today's ongoing ocean acidification. We manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepods, Amphiascoides atopus and Schizopera knabeni were both more sensitive to increased acidity when generated by CO2. The present study indicates that copepods living in environments more prone to hypercapnia, such as mudflats where S. knabeni lives, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion in A. atopus. This interaction could be due to a competition for H+ and metals for binding sites.
Resumo:
Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
Resumo:
The Arctic Ocean and its associated ecosystems face numerous challenges over the coming century. Increasing atmospheric CO2 is causing increasing warming and ice melting as well as a concomitant change in ocean chemistry ("ocean acidification"). As temperature increases it is expected that many temperate species will expand their geographic distribution northwards to follow this thermal shift; however with the addition of ocean acidification this transition may not be so straightforward. Here we investigate the potential impacts of ocean acidification and climate change on populations of an intertidal species, in this case the barnacle Semibalanus balanoides, at the northern edge of its range. Growth and development of metamorphosing post-larvae were negatively impacted at lower pH (pH 7.7) compared to the control (pH 8.1) but were not affected by elevated temperature (+4 °C). The mineral composition of the shells did not alter under any of the treatments. The combination of reduced growth and maintained mineral content suggests that there may have been a change in the energetic balance of the exposed animals. In undersaturated conditions more mineral is expected to dissolve from the shell and hence more energy would be required to maintain the mineral integrity. Any energy that would normally be invested into growth could be reallocated and hence organisms growing in lowered pH grow slower and end up smaller than individuals grown in higher pH conditions. The idea of reallocation of resources under different conditions of pH requires further investigation. However, there could be long-term implications on the fitness of these barnacles, which in turn may prevent them from successfully colonising new areas.
Resumo:
The effect of short-term (5 days) exposure to CO2-acidified seawater (year 2100 predicted values, ocean pH = 7.6) on key aspects of the function of the intertidal common limpet Patella vulgata (Gastropoda: Patellidae) was investigated. Changes in extracellular acid-base balance were almost completely compensated by an increase in bicarbonate ions. A concomitant increase in haemolymph Ca2+ and visible shell dissolution implicated passive shell dissolution as the bicarbonate source. Analysis of the radula using SEM revealed that individuals from the hypercapnic treatment showed an increase in the number of damaged teeth and the extent to which such teeth were damaged compared with controls. As radula teeth are composed mainly of chitin, acid dissolution seems unlikely, and so the proximate cause of damage is unknown. There was no hypercapnia-related change in metabolism (O2 uptake) or feeding rate, also discounting the possibility that teeth damage was a result of a CO2-related increase in grazing. We conclude that although the limpet appears to have the physiological capacity to maintain its extracellular acid-base balance, metabolism and feeding rate over a 5 days exposure to acidified seawater, radular damage somehow incurred during this time could still compromise feeding in the longer term, in turn decreasing the top-down ecosystem control that P. vulgata exerts over rocky shore environments.
Resumo:
Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
Resumo:
Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
Resumo:
The complexity of modern geochemical data sets is increasing in several aspects (number of available samples, number of elements measured, number of matrices analysed, geological-environmental variability covered, etc), hence it is becoming increasingly necessary to apply statistical methods to elucidate their structure. This paper presents an exploratory analysis of one such complex data set, the Tellus geochemical soil survey of Northern Ireland (NI). This exploratory analysis is based on one of the most fundamental exploratory tools, principal component analysis (PCA) and its graphical representation as a biplot, albeit in several variations: the set of elements included (only major oxides vs. all observed elements), the prior transformation applied to the data (none, a standardization or a logratio transformation) and the way the covariance matrix between components is estimated (classical estimation vs. robust estimation). Results show that a log-ratio PCA (robust or classical) of all available elements is the most powerful exploratory setting, providing the following insights: the first two processes controlling the whole geochemical variation in NI soils are peat coverage and a contrast between “mafic” and “felsic” background lithologies; peat covered areas are detected as outliers by a robust analysis, and can be then filtered out if required for further modelling; and peat coverage intensity can be quantified with the %Br in the subcomposition (Br, Rb, Ni).