982 resultados para Agent Oriented Modeling
Resumo:
TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
Resumo:
Summary
Resumo:
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.
Resumo:
We present a model that allows for the derivation of the experimentally accesible observables: spatial steps, mean velocity, stall force, useful power, efficiency and randomness, etc. as a function of the [adenosine triphosphate] concentration and an external load F. The model presents a minimum of adjustable parameters and the theoretical predictions compare well with the available experimental results.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.
Resumo:
Modeling concentration-response function became extremely popular in ecotoxicology during the last decade. Indeed, modeling allows determining the total response pattern of a given substance. However, reliable modeling is consuming in term of data, which is in contradiction with the current trend in ecotoxicology, which aims to reduce, for cost and ethical reasons, the number of data produced during an experiment. It is therefore crucial to determine experimental design in a cost-effective manner. In this paper, we propose to use the theory of locally D-optimal designs to determine the set of concentrations to be tested so that the parameters of the concentration-response function can be estimated with high precision. We illustrated this approach by determining the locally D-optimal designs to estimate the toxicity of the herbicide dinoseb on daphnids and algae. The results show that the number of concentrations to be tested is often equal to the number of parameters and often related to the their meaning, i.e. they are located close to the parameters. Furthermore, the results show that the locally D-optimal design often has the minimal number of support points and is not much sensitive to small changes in nominal values of the parameters. In order to reduce the experimental cost and the use of test organisms, especially in case of long-term studies, reliable nominal values may therefore be fixed based on prior knowledge and literature research instead of on preliminary experiments
Resumo:
The likelihood of significant exposure to drugs in infants through breast milk is poorly defined, given the difficulties of conducting pharmacokinetics (PK) studies. Using fluoxetine (FX) as an example, we conducted a proof-of-principle study applying population PK (popPK) modeling and simulation to estimate drug exposure in infants through breast milk. We simulated data for 1,000 mother-infant pairs, assuming conservatively that the FX clearance in an infant is 20% of the allometrically adjusted value in adults. The model-generated estimate of the milk-to-plasma ratio for FX (mean: 0.59) was consistent with those reported in other studies. The median infant-to-mother ratio of FX steady-state plasma concentrations predicted by the simulation was 8.5%. Although the disposition of the active metabolite, norfluoxetine, could not be modeled, popPK-informed simulation may be valid for other drugs, particularly those without active metabolites, thereby providing a practical alternative to conventional PK studies for exposure risk assessment in this population.
Resumo:
Summary
Resumo:
Bone marrow hematopoietic stem cells (HSCs) are responsible for both lifelong daily maintenance of all blood cells and for repair after cell loss. Until recently the cellular mechanisms by which HSCs accomplish these two very different tasks remained an open question. Biological evidence has now been found for the existence of two related mouse HSC populations. First, a dormant HSC (d-HSC) population which harbors the highest self-renewal potential of all blood cells but is only induced into active self-renewal in response to hematopoietic stress. And second, an active HSC (a-HSC) subset that by and large produces the progenitors and mature cells required for maintenance of day-to-day hematopoiesis. Here we present computational analyses further supporting the d-HSC concept through extensive modeling of experimental DNA label-retaining cell (LRC) data. Our conclusion that the presence of a slowly dividing subpopulation of HSCs is the most likely explanation (amongst the various possible causes including stochastic cellular variation) of the observed long term Bromodeoxyuridine (BrdU) retention, is confirmed by the deterministic and stochastic models presented here. Moreover, modeling both HSC BrdU uptake and dilution in three stages and careful treatment of the BrdU detection sensitivity permitted improved estimates of HSC turnover rates. This analysis predicts that d-HSCs cycle about once every 149-193 days and a-HSCs about once every 28-36 days. We further predict that, using LRC assays, a 75%-92.5% purification of d-HSCs can be achieved after 59-130 days of chase. Interestingly, the d-HSC proportion is now estimated to be around 30-45% of total HSCs - more than twice that of our previous estimate.
Resumo:
We present a high‐resolution electron microscopy study of the microstructure of boron nitride thin films grown on silicon (100) by radio‐frequency plasma‐assisted chemical vapor deposition using B2H6 (1% in H2) and NH3 gases. Well‐adhered boron nitride films grown on the grounded electrode show a highly oriented hexagonal structure with the c‐axis parallel to the substrate surface throughout the film, without any interfacial amorphous layer. We ascribed this textured growth to an etching effect of atomic hydrogen present in the gas discharge. In contrast, films grown on the powered electrode, with compressive stress induced by ion bombardment, show a multilayered structure as observed by other authors, composed of an amorphous layer, a hexagonal layer with the c‐axis parallel to the substrate surface and another layer oriented at random
Resumo:
Optimizing collective behavior in multiagent systems requires algorithms to find not only appropriate individual behaviors but also a suitable composition of agents within a team. Over the last two decades, evolutionary methods have emerged as a promising approach for the design of agents and their compositions into teams. The choice of a crossover operator that facilitates the evolution of optimal team composition is recognized to be crucial, but so far, it has never been thoroughly quantified. Here, we highlight the limitations of two different crossover operators that exchange entire agents between teams: restricted agent swapping (RAS) that exchanges only corresponding agents between teams and free agent swapping (FAS) that allows an arbitrary exchange of agents. Our results show that RAS suffers from premature convergence, whereas FAS entails insufficient convergence. Consequently, in both cases, the exploration and exploitation aspects of the evolutionary algorithm are not well balanced resulting in the evolution of suboptimal team compositions. To overcome this problem, we propose combining the two methods. Our approach first applies FAS to explore the search space and then RAS to exploit it. This mixed approach is a much more efficient strategy for the evolution of team compositions compared to either strategy on its own. Our results suggest that such a mixed agent-swapping algorithm should always be preferred whenever the optimal composition of individuals in a multiagent system is unknown.
Resumo:
Urinary incontinence can be treated by endoscopic injection of bulking agents, however, no optimal therapeutic effect has been achieved upon this treatment yet. In the present study, the development of a injectable poly(acrylonitrile) hydrogel paste is described, and its efficacy and histological behavior, once injected into the submucosal space of the minipig bladder, are evaluated. A device was developed to mix poly(acrylonitrile) hydrogel powder with glycerin, used as carrier, prior to injection into the submucosal space of the bladder. Several paste deposits, depending on the size of the bladder, were injected per animal. The implants were harvested at days 7, 14, 21, 28, 84 and 168 and analyzed morphologically and by histology. The persistence of the implants was demonstrated. However, at later time points the implants were split up and surrounded by granulomatous tissue, which was gradually replaced by histiocytes and adipocytes. Transitory focal urothelial metaplasia was observed only at day 7 and moderate foreign body reaction was detected predominantly between the second and fifth week. This study demonstrated the feasibility to develop an injectable paste of poly(acrylonitrile) hydrogel thought to provide the expected bulking effect, necessary for the treatment of urinary incontinence.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.