970 resultados para Ag additions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the sintering of an 18Ni(350) maraging steel with additions of boron, with the aim of producing high hardness rapid tooling. Reaction of the boron with the alloying elements in the maraging steel resulted in the formation of a Mo- and Ti-rich borides. The former melted at similar to1220degreesC, providing a liquid phase for enhanced sintering. Although densification could occur regardless of the boron content, especially at high temperature, 0.4% B was required to produce a near full density component. The formation of the various borides depleted the matrix of critical age hardening elements. However, by altering the starting powder composition to compensate for this, hardness close to the wrought alloy has been achieved. This hardness was comparable to a common die casting tool steel. Examples of dies produced using selective laser sintering (SLS) are also shown. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adding 1%Si to binary Al-5Mg alloy slightly increases the yield stress in comparison with the Si free alloy but dramatically reduces the ductility and tensile strength due to the formation of brittle eutectic Mg2Si and pi-Al8FeMg3Si6 particles. Adding 3%Si slightly reduces the yield stress, presumably due to some of the Mg being tied up in the Mg2Si, and further reduces the ductility due to the increased volume fraction of intermetallics. Solution heat treatment at 436degreesC decreases the yield stress of both Si containing alloys, and slightly increases the ductility in the alloy with 3%Si. Subsequent ageing at 180degreesC has no further effects on the strength or ductility. The loss in strength of the heat treated alloys seems to be due to overageing Of Mg2Si precipitates dispersed in the bulk of the alloy. (C) 2004 W. S. Maney Son Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power required to operate large gyratory mills often exceeds 10 MW. Hence, optimisation of the power consumption will have a significant impact on the overall economic performance and environmental impact of the mineral processing plant. In most of the published models of tumbling mills (e.g. [Morrell, S., 1996. Power draw of wet tumbling mills and its relationship to charge dynamics, Part 2: An empirical approach to modelling of mill power draw. Trans. Inst. Mining Metall. (Section C: Mineral Processing Ext. Metall.) 105, C54-C62. Austin, L.G., 1990. A mill power equation for SAG mills. Miner. Metall. Process. 57-62]), the effect of lifter design and its interaction with mill speed and filling are not incorporated. Recent experience suggests that there is an opportunity for improving grinding efficiency by choosing the appropriate combination of these variables. However, it is difficult to experimentally determine the interactions of these variables in a full scale mill. Although some work has recently been published using DEM simulations, it was basically. limited to 2D. The discrete element code, Particle Flow Code 3D (PFC3D), has been used in this work to model the effects of lifter height (525 cm) and mill speed (50-90% of critical) on the power draw and frequency distribution of specific energy (J/kg) of normal impacts in a 5 m diameter autogenous (AG) mill. It was found that the distribution of the impact energy is affected by the number of lifters, lifter height, mill speed and mill filling. Interactions of lifter design, mill speed and mill filling are demonstrated through three dimensional distinct element methods (3D DEM) modelling. The intensity of the induced stresses (shear and normal) on lifters, and hence the lifter wear, is also simulated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim Of this study was to develop a steel powder system for rapid tooling applications. The properties required are rapid densification, dimensional precision. high mechanical strength and corrosion resistance. To this end. the densification and microstructural development of a loose packed 200 grade maraging steel powder sintered with ferrophosphorous additions was examined. Liquid initially formed from a reaction of the Fe3P and carbon, which was a residue of the polymeric binder used to shape the powder compact. This liquid caused a burst of sintering which ceased as the liquid dissipated. On further heating, a phosphorous rich supersolidus liquid appeared at triple points and grain boundaries leading to rapid densification and a sintered density of 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of SiC particles effectively grain refined a range of Mg-Al alloys. The greatest reductions in grain size were found for the alloys with lower Al contents. The presence of Mg2Si in the microstructure after that SiC addition, and consideration of phase equilibria suggested that the SiC transforms to Al4C3, and this is the actual nucleant. The addition of Mn poisoned the grain refining effect of the SiC addition, probably due to the formation of less potent Al-Mn-carbides. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulties associated with slurry transportation in autogenous (ag) and semi-autogenous (sag) grinding mills have become more apparent in recent years with the increasing trend to build larger diameter mills for grinding high tonnages. This is particularly noticeable when ag/sag mills are run in closed circuit with classifiers such as fine screens/cyclones. Extensive test work carried out on slurry removal mechanism in grate discharge mills (ag/sag) has shown that the conventional pulp lifters (radial and curved) have inherent drawbacks. They allow short-circuiting of the slurry from pulp lifters into the grinding chamber leading to slurry pool formation. Slurry pool absorbs part of the impact thus inhibiting the grinding process. Twin Chamber Pulp Lifter (TCPL) - an efficient design of pulp lifter developed by the authors overcomes the inherent drawbacks of the conventional pulp lifters. Extensive testing in both laboratory and pilot scale mills has shown that the TCPL completely blocks the flow-back process, thus allowing the mill to operate close to their design flow capacity. The TCPL performance is also found to be independent of variations in charge volume and grate design, whereas they significantly affect the performance of conventional pulp lifters (radial and curved). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The patterns of rock comminution within tumbling mills, as well as the nature of forces, are of significant practical importance. Discrete element modelling (DEM) has been used to analyse the pattern of specific energy applied to rock, in terms of spatial distribution within a pilot AG/SAG mill. We also analysed in some detail the nature of the forces, which may result in rock comminution. In order to examine the distribution of energy applied within the mill, the DEM models were compared with measured particle mass losses, in small scale AG and SAG mill experiments. The intensity of contact stresses was estimated using the Hertz theory of elastic contacts. The results indicate that in the case of the AG mill, the highest intensity stresses and strains are likely to occur deep within the charge, and close to the base. This effect is probably more pronounced for large AG mills. In the SAG mill case, the impacts of the steel balls on the surface of the charge are likely to be the most potent. In both cases, the spatial pattern of medium-to-high energy collisions is affected by the rotational speed of the mill. Based on an assumed damage threshold for rock, in terms of specific energy introduced per single collision, the spatial pattern of productive collisions within each charge was estimated and compared with rates of mass loss. We also investigated the nature of the comminution process within AG vs. SAG mill, in order to explain the observed differences in energy utilisation efficiency, between two types of milling. All experiments were performed using a laboratory scale mill of 1.19 m diameter and 0.31 m length, equipped with 14 square section lifters of height 40 mm. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of trace level Ni additions on the eutectic solidification mode of Sn-0.7Cu has been studied using continuous torque experiments during solidification. The solid fraction at which resistance to paddle rotation at the thermal centre of the sample occurs is related to the spatial distribution of solid during solidification. The results indicate that a transition in solidification mode occurs in the range 0-300 ppm Ni. Growth occurs antiparallel to heat flow from near the mould walls in the Ni-free alloy, while equiaxed growth from distributed centres dominates in alloys containing at least 300 ppm Ni. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioavailability of iron, in combination with essential macronutrients such as phosphorus, has been hypothesised to be linked to nuisance blooms of the toxic cyanobacterium Lyngbya majuscula. The present laboratory study used two biological assay techniques to test whether various concentrations of added iron (inorganic and organically chelated) enhanced L. majuscula filament growth and productivity (C-14-bicarbonate uptake rate). Organically chelated iron (FeEDTA) with adequate background concentrations of phosphorus and molybdenum caused the largest increases (up to 4.5 times the control) in L. majuscula productivity and filament growth. The addition of inorganic iron (without added phosphorus or molybdenum) also stimulated L. majuscula filament growth. However, overall the FeEDTA was substantially and significantly more effective in promoting L. majuscula growth than inorganic iron (FeCl3). The organic chelator (EDTA) alone and molybdenum alone also enhanced L. majuscula growth but to a lesser extent than the chelated iron. The results of the present laboratory study support the hypothesis that iron and chelating organic compounds may be important in promoting blooms of L. majuscula in coastal waters of Queensland, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium is the most widely used and a very effective element for modifying the morphology of eutectic silicon, while Ti and B are commonly present in the commercial grain refiners used for Al-Si alloys. Systematic studies on the effects of combined additions of Sr and different AlTiB grain refiners on the Al + Si eutectic and primary aluminium solidification have been performed. While slight coarsening of both eutectic Si and primary aluminium grains occurs during holding, no obvious interactions are observed between Sr and AlTiB grain refiners when the addition level of grain refiners is low. As a result, a well-modified and grain refined structure was obtained. However, strong negative interactions between Sr and Al1.5Ti1.5B3 were observed as the addition level of the grain refiner increases. It was found that these interactions have a much more profound impact on the eutectic solidification than the primary Al solidification. The melt treated with combined additions of Sr and Al1.5Ti1.5B still shows good grain refinement efficiency even after losing its modification completely. The mechanism responsible for such negative interactions is further discussed. (c) 2006 Elsevier B.V. All rights reserved.