947 resultados para Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
Resumo:
In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
Carbon/epoxy 8552 prepreg is a thermoplastic toughened high-performance epoxy being used in the manufacture of advanced army material. Understanding the cure behavior of a thermosetting system is essential in the development and optimization of composite fabrication processes. The cure kinetics and rheological behavior were evaluated using a differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and a rheometer. Values of the kinetic parameters were obtained from dynamic DSC scans using an nth order reaction model. Rheological measurements as a function of temperature and time were made for the prepreg system. The manufacturer's recommended cure cycle was evaluated and considered adequate to consolidated the studied system.
Resumo:
Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.
Resumo:
In indicating the microwave irradiation for disinfecting dentures it is necessary to see how this procedure influences Candida albicans integrity and viability. The aim of this study was to evaluate the ability of microwaves to inactivate C. albicans and damage cell membrane integrity. Two 200-ml C. albicans (ATCC 10231) suspensions were obtained. A sterile denture was placed in a beaker containing the Experimental (ES) or the Control suspension (CS). ES was microwaved at 650 W for 6 min. Suspensions were optically counted using methylene blue dye uptake as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550 nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolftaleine complexone method); DNA (spectrophotometer measurements at 260 nm) and K + (selective electrode technique). Data were analysed by Student's t- or Wilcoxon z-tests (α = 0.05). All ES cells demonstrated cell membrane damage. Viable cells were non-existent in the ES ASD plates. No significant difference in optical density between ES and CS was observed (P = 0.272). ES cells released significantly high protein (P < 0.001, Bradford; P = 0.005, Pyrogallol red), K+ (P < 0.001), Ca++ (P = 0.012) and DNA (P = 0.046) contents. Microwaves inactivated C. albicans and damaged cell membrane integrity. © 2007 The Authors.
Resumo:
Purpose: This study evaluated the effectiveness of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. Materials and Methods: Sterile specimens were individually inoculated with one of the tested microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Bacillus subtilis) and incubated for 24 hours at 37°C. For each microorganism, 10 specimens were not microwaved (control), and 50 specimens were microwaved. Control specimens were individually immersed in sterile saline, and replicate aliquots of serial dilutions were plated on selective media appropriate for each organism. Irradiated specimens were immersed in water and microwaved at 650 W for 1, 2, 3, 4, or 5 minutes before serial dilutions and platings. After 48 hours of incubation, colonies on plates were counted. Irradiated specimens were also incubated for 7 days. Some specimens were prepared for scanning electron microscopic (SEM) analysis. Results: Specimens irradiated for 3, 4, and 5 minutes showed sterilization. After 2 minutes of irradiation, specimens inoculated with C. albicans were sterilized, whereas those inoculated with bacteria were disinfected. One minute of irradiation resulted in growth of all microorganisms. SEM examination indicated alteration in cell morphology of sterilized specimens. The effectiveness of microwave irradiation was improved as the exposure time increased. Conclusion: This study suggests that 3 minutes of microwave irradiation can be used for acrylic resin sterilization, thus preventing cross-contamination. © 2008 by The American College of Prosthodontists.
Resumo:
In order to simplify computer management, several system administrators are adopting advanced techniques to manage software configuration of enterprise computer networks, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. Virtualization is an established technology, however its use is been more focused on server consolidation and virtual desktop infrastructure, not for managing distributed computers over a network. This paper discusses the feasibility of the Distributed Virtual Machine Environment, a new approach for enterprise computer management that combines virtualization and distributed system architecture as the basis of the management architecture. © 2008 IEEE.
Resumo:
This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.
Resumo:
Includes bibliography
Resumo:
The objective of this study was to measure the thickness of the hybrid layer (HLT), length of resin tags (RTL) and bond strength (BS) in the same teeth, using a self-etching adhesive system Adper Prompt L Pop to intact dentin and to analyze the correlation between HLTand RTL and their BS. Ten human molars were used for the restorative procedures and each restored tooth was sectioned in mesio-distal direction. One section was submitted to light microscopy analysis of HLT and RTL (400x). Another section was prepared and submitted to the microtensile bond test (0.5 mm/min). The fractured surfaces were analyzed using scanning electron microscopy to determine the failure pattern. Correlation between HLT and RTL with the BS data was analyzed by linear regression. The mean values of HLT, RTL and BS were 3.36 microm, 12.97 microm and 14.10 MPa, respectively. No significant relationship between BS and HLT (R2= 0.011, p>0.05) and between BS and RTL (R2= 0.038) was observed. The results suggested that there was no significant correlation between the HLT and RTL with the BS of the self-etching adhesive to dentin.
Resumo:
This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.
Resumo:
This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples. © 2010 American Institute of Physics.
Resumo:
This study evaluated the efficacy of 2 types of rotary instruments employed in association with sodium hypochlorite (NaOCl) or EDTA in removing calcium hydroxide (CH) residues from root canals dentin walls. Forty-two mandibular human incisors were instrumented with the ProTaper System up to F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA and filled with a CH intracanal dressing. After 7 days, the CH dressing was removed using 4 techniques: NiTi rotary instrument size 25, 0.06 taper (K3 Endo) and irrigation with 17% EDTA (Group 1), NiTi rotary F1 instrument (ProTaper) and irrigation with 17% EDTA (Group 2), NiTi rotary instrument size 25, 0.06 taper and irrigation with 2.5% NaOCl (Group 3) and NiTi rotary F1 instrument and irrigation with 2.5% NaOCl (Group 4). Two roots without intracanal dressing were used as negative controls. Teeth were evaluated by scanning electron microscopy, in the cervical and apical canal thirds. None of the techniques removed the CH dressing completely. In the apical and cervical thirds, F1 instrument was better than instrument size 25, 0.06 taper in removing CH residues (p<0.05), regardless of the final irrigating solution. No difference was found between the irrigating solutions in the groups of F1 instrument and of instrument size 25, 0.06 taper (p>0.05). The negative controls had no CH residues on the dentin walls. In conclusion, the ProTaper F1 instrument was better than K3 Endo instrument size 25, 0.06 taper in the removal of CH intracanal medication, regardless of irrigating solution used.
Resumo:
Includes bibliography