928 resultados para Adjustable speed
Resumo:
The analysis of the running safety of railway vehicles on viaducts subject to strong lateral actions such as cross winds requires coupled nonlinear vehicle-bridge interaction models, capable to study extreme events. In this paper original models developed by the authors are described, based on finite elements for the structure, multibody and finite element models for the vehicle, and specially developed interaction elements for the interface between wheel and rail. The models have been implemented within ABAQUS and have full nonlinear capabilities for the structure, the vehicle and the contact interface. An application is developed for the Ulla Viaduct, a 105 m tall arch in the Spanish high-speed railway network. The dynamic analyses allow obtaining critical wind curves, which define the running safety conditions for a given train in terms of speed of circulation and wind speed
Resumo:
When dealing with the design of a high-speed train, a multiobjective shape optimization problem is formulated, as these vehicles are object of many aerodynamic problems which are known to be in conflict. More mobility involves an increase in both the cruise speed and lightness, and these requirements directly influence the stability and the ride comfort of the passengers when the train is subjected to a side wind. Thus, crosswind stability plays a more relevant role among the aerodynamic objectives to be optimized. An extensive research activity is observed on aerodynamic response in crosswind conditions.
Resumo:
Genetic algorithms (GA) have been used for the minimization of the aerodynamic drag of a train subject to front wind. The significant importance of the external aerodynamic drag on the total resistance a train experiments as the cruise speed is increased highlights the interest of this study. A complete description of the methodology required for this optimization method is introduced here, where the parameterization of the geometry to be optimized and the metamodel used to speed up the optimization process are detailed. A reduction of about a 25% of the initial aerodynamic drag is obtained in this study, what confirms GA as a proper method for this optimization problem. The evolution of the nose shape is consistent with the literature. The advantage of using metamodels is stressed thanks to the information of the whole design space extracted from it. The influence of each design variable on the objective function is analyzed by means of an ANOVA test.
Resumo:
The analysis of how tourists select their holiday destinations along with the factors that determine their choices is very important for promoting tourism. In particular, transportation is supposed to have influence on tourists? decissions. The objective of this paper is to investigate more especifically the role of High Speed Rail (HSR) in this choice. Two key tourist destinations in Europe, Paris and Madrid, have been chosen to understand the factors influencing this choice. On the basis of a survey conducted to tourists, we found out that some aspects such as the presence of architectural sites, the quality of promotion of the destination itself, and cultural and social events, have an impact on their choice. However the presence of the HSR system affects the choice of Paris and Madrid as a touristic destination in a different way. For Paris, TGV is considered a real transport mode alternative among tourists who use it quite often. On the other hand, Madrid is chosen by tourists irrespective of the presence of an efficient HSR network. Data collected from the two surveys have been used for a further quantitative analysis. Regression models have been specified and parameters have been calibrated to identify the factors influencing holidaymakers to revisit Paris and Madrid and visit other touristic spots accesible from HSR from these cities.
Resumo:
This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the “PETER 739 HAULER” scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.
Resumo:
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772–783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel’s main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.
Resumo:
Con el objetivo de valorar la efectividad de la técnica de desplazamiento en porteros de fútbol y la velocidad de movimiento, se realizó un estudio con 9 porteros de fútbol juveniles de alto nivel de la cantera de un equipo de la primera división española. Se ha pretendido apoyar el trabajo del cuerpo técnico. Se realizaron tres tests, un primer Test y un Re-test para validar los datos y un Post-Test para ver la evolución de los jugadores a las seis semanas. Durante esas seis semanas, un sujeto entrenó en la herramienta de valoración. El material utilizado fue la herramienta Speed-Court. Los resultados mostraron que la técnica de desplazamiento libre siempre es más eficiente en dichos tests y que los jugadores mejoraron en uno de los test tras seis semanas de entrenamiento. El jugador que entrenó durante las seis semanas mejoró todos los resultados salvo en la técnica de portero desde atrás.
Resumo:
The measurement deviations of cup anemometers are studied by analyzing the rotational speed of the rotor at steady state (constant wind speed). The differences of the measured rotational speed with respect to the averaged one based on complete turns of the rotor are produced by the harmonic terms of the rotational speed. Cup anemometer sampling periods include a certain number of complete turns of the rotor, plus one incomplete turn, the residuals from the harmonic terms integration within that incomplete turn (as part of the averaging process) being responsible for the mentioned deviations. The errors on the rotational speed due to the harmonic terms are studied analytically and then experimentally, with data from more than 500 calibrations performed on commercial anemometers.
Resumo:
Synchronous machines with brushless excitation have the disadvantage that the field winding is not accessible for the de-excitation of the machine. This means that, despite the proper operation of the protection system, the slow de-excitation time constant may produce severe damage in the event of an internal short circuit. A high-speed de-excitation system for these machines was developed, and this study presents the continuation of a previously published study. This study presents the design by computer simulation and the results of the first commissioning of this de-excitation system in a commercial 20 MVA hydro-generator. The de-excitation is achieved by inserting resistance in the field circuit, obtaining a dynamic response similar to that achieved in machines with static excitation. In this case, a non-linear discharge resistor was used, making the dynamic response even better.
Resumo:
The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.
Resumo:
The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.
Resumo:
Acknowledgements The authors acknowledge L. Wicks and B. de Francisco for helping in coral sampling and coral care in the aquaria facilities at SAMS. Thanks to C. Campbell and the CCAP for kind support and help. Scientific party and crew on board the RVs Calanus and Seol Mara, as well as on board the RRS James Cook during the Changing Oceans cruise (JC_073) are greatly acknowledged. Thanks to colleagues at SAMS for their support during our stay at SAMS. We are in debt with A. Olariaga for his help modifying the cylindrical experimental chambers used in the experiments, and C.C. Suckling for assistance with the flume experiment. Many thanks go to G. Kazadinis for preparing the POM used in the feeding experiments. We also thank two anonymous reviewers and the editor for their constructive comments, which contribute to improve the manuscript. This work has been supported by the European Commission through two ASSEMBLE projects (grant agreement no. 227799) conducted in 2010 and 2011 at SAMS, as well as by the UK Ocean Acidification Research Programme's Benthic Consortium project (awards NE/H01747X/1 and NE/H017305/1) funded by NERC. [SS]