1000 resultados para Acoustic imaging
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.
Resumo:
Introduction: MCTI is used to assess acute ischemic stroke (AIS) patients.We postulated that use of MCTI improves patient outcome regardingindependence and mortality.Methods: From the ASTRAL registry, all patients with an AIS and a non-contrast-CT (NCCT), angio-CT (CTA) or perfusion-CT (CTP) within24 h from onset were included. Demographic, clinical, biological, radio-logical, and follow-up caracteristics were collected. Significant predictorsof MCTI use were fitted in a multivariate analysis. Patients undergoingCTA or CTA&CTP were compared with NCCT patients with regards tofavourable outcome (mRS ≤ 2) at 3 months, 12 months mortality, strokemechanism, short-term renal function, use of ancillary diagnostic tests,duration of hospitalization and 12 months stroke recurrence.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
Cirrhosis is the final stage of most of chronic liver diseases, and is almost invariably complicated by portal hypertension, which is the most important cause of morbidity and mortality in these patients. This review will focus on the non-invasive methods currently used in clinical practice for diagnosing liver cirrhosis and portal hypertension. The first-line techniques include physical examination, laboratory parameters, transient elastography and Doppler-US. More sophisticated imaging methods which are less commonly employed are CT scan and MRI, and new technologies which are currently under evaluation are MR elastography and acoustic radiation force imaging (ARFI). Even if none of them can replace the invasive measurement of hepatic venous pressure gradient and the endoscopic screening of gastroesophageal varices, they notably facilitate the clinical management of patients with cirrhosis and portal hypertension, and provide valuable prognostic information.
Resumo:
The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.
Resumo:
Imaging in neuroscience, clinical research and pharmaceutical trials often employs the 3D magnetisation-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images with high spatial resolution of the human brain. Typical research and clinical routine MPRAGE protocols with ~1mm isotropic resolution require data acquisition time in the range of 5-10min and often use only moderate two-fold acceleration factor for parallel imaging. Recent advances in MRI hardware and acquisition methodology promise improved leverage of the MR signal and more benign artefact properties in particular when employing increased acceleration factors in clinical routine and research. In this study, we examined four variants of a four-fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and segmented MPRAGE) and compared clinical readings, basic image quality metrics (SNR, CNR), and automated brain tissue segmentation for morphological assessments of brain structures. The results were benchmarked against a widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that served as reference in this study. 22 healthy subjects (age=20-44yrs.) were imaged with all MPRAGE variants in a single session. An experienced reader rated all images of clinically useful image quality. CAIPIRINHA MPRAGE scans were perceived on average to be of identical value for reading as the reference ADNI-2 protocol. SNR and CNR measurements exhibited the theoretically expected performance at the four-fold acceleration. The results of this study demonstrate that the four-fold accelerated protocols introduce systematic biases in the segmentation results of some brain structures compared to the reference ADNI-2 protocol. Furthermore, results suggest that the increased noise levels in the accelerated protocols play an important role in introducing these biases, at least under the present study conditions.
Resumo:
Imaging systems have developed latest years and developing is still continuing following years. Manufacturers of imaging systems give promises for the quality of the performance of imaging systems to advertise their products. Promises for the quality of the performance are often so good that they will not be tested in normal usage. The main target in this research is to evaluate the quality of the performance of two imaging systems: Scanner and CCD color camera. Optical measurement procedures were planned to evaluate the quality of imaging performances. Other target in this research is to evaluate calibration programs for the camera and the scanner. Measuring targets had to choose to evaluate the quality of imaging performances. Manufacturers have given definitions for targets. The third task in this research is to evaluate and consider how good measuring targets are.
Resumo:
PURPOSE: The purpose of our study was to assess whether a model combining clinical factors, MR imaging features, and genomics would better predict overall survival of patients with glioblastoma (GBM) than either individual data type. METHODS: The study was conducted leveraging The Cancer Genome Atlas (TCGA) effort supported by the National Institutes of Health. Six neuroradiologists reviewed MRI images from The Cancer Imaging Archive (http://cancerimagingarchive.net) of 102 GBM patients using the VASARI scoring system. The patients' clinical and genetic data were obtained from the TCGA website (http://www.cancergenome.nih.gov/). Patient outcome was measured in terms of overall survival time. The association between different categories of biomarkers and survival was evaluated using Cox analysis. RESULTS: The features that were significantly associated with survival were: (1) clinical factors: chemotherapy; (2) imaging: proportion of tumor contrast enhancement on MRI; and (3) genomics: HRAS copy number variation. The combination of these three biomarkers resulted in an incremental increase in the strength of prediction of survival, with the model that included clinical, imaging, and genetic variables having the highest predictive accuracy (area under the curve 0.679±0.068, Akaike's information criterion 566.7, P<0.001). CONCLUSION: A combination of clinical factors, imaging features, and HRAS copy number variation best predicts survival of patients with GBM.
Resumo:
The application of contrast media in post-mortem radiology differs from clinical approaches in living patients. Post-mortem changes in the vascular system and the absence of blood flow lead to specific problems that have to be considered for the performance of post-mortem angiography. In addition, interpreting the images is challenging due to technique-related and post-mortem artefacts that have to be known and that are specific for each applied technique. Although the idea of injecting contrast media is old, classic methods are not simply transferable to modern radiological techniques in forensic medicine, as they are mostly dedicated to single-organ studies or applicable only shortly after death. With the introduction of modern imaging techniques, such as post-mortem computed tomography (PMCT) and post-mortem magnetic resonance (PMMR), to forensic death investigations, intensive research started to explore their advantages and limitations compared to conventional autopsy. PMCT has already become a routine investigation in several centres, and different techniques have been developed to better visualise the vascular system and organ parenchyma in PMCT. In contrast, the use of PMMR is still limited due to practical issues, and research is now starting in the field of PMMR angiography. This article gives an overview of the problems in post-mortem contrast media application, the various classic and modern techniques, and the issues to consider by using different media.
Resumo:
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Resumo:
The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.
Resumo:
O Breast Imaging Reporting and Data System (BI-RADS™), do American College of hRadiology, foi concebido para padronizar o laudo mamográfico e reduzir os fatores de confusão na descrição e interpretação das imagens, além de facilitar o monitoramento do resultado final. OBJETIVO: Identificar a maneira como vem sendo utilizado o BI-RADS™, gerando informações que possam auxiliar o Colégio Brasileiro de Radiologia a desenvolver estratégias para aperfeiçoar o seu uso. MATERIAIS E MÉTODOS: Os dados foram coletados na cidade de Goiânia, GO. Foram solicitados os exames de mamografia anteriores a todas as mulheres que se dirigiram ao serviço para realização de mamografia entre janeiro/2003 e junho/2003. Foram incluídos na análise exames anteriores, realizados entre 1/7/2001 e 30/6/2003. RESULTADOS: Foram coletados 104 laudos anteriores, emitidos por 40 radiologistas de 33 diferentes serviços. Dos 104 laudos, 77% (n = 80) utilizavam o BI-RADS™. Destes, apenas 15% (n = 12) eram concisos, nenhum utilizava a estrutura e organização recomendadas pelo sistema, 98,75% (n = 79) não respeitavam o léxico e 65% (n = 51) não faziam recomendação de conduta. CONCLUSÃO: O BI-RADS™, apesar de bastante utilizado, não foi reconhecido como sistema para padronização dos laudos. Foi usado quase exclusivamente como forma de classificação final dos exames.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.