924 resultados para Acetolactate synthase -- Inhibitors
Resumo:
INTRODUCTION Erectile dysfunction (ED) is an increasing health problem that demands effective treatment. There is evidence that phosphodiesterase-5 inhibitors (PDE5-Is) and psychological intervention (PI) are effective treatment options; however, little is known about their comparative efficacy and the efficacy of combined treatments. AIM The aim of this systematic review and meta-analysis is to evaluate the comparative efficacy of PI, PDE5-Is, and their combination in the treatment of ED. MAIN OUTCOME MEASURES Primary outcome was ED symptoms, and secondary outcome was sexual satisfaction of the patient. METHODS A systematic literature search was conducted in order to identify relevant articles published between 1998 and 2012. We included randomized controlled trials and controlled trials comparing PI with PDE5-I treatment or one of them against a combination of both. RESULTS Eight studies with a total number of 562 patients were included in the meta-analysis. The results of the included studies are inconclusive, though they show a trend towards a larger effect of combined treatment compared with PI or PDE5-I treatment alone. The meta-analysis found that, overall, combined treatment was more efficacious for ED symptoms than PDE5-I treatment or PI alone. Combined treatment was more efficacious than PDE5-I use alone on sexual satisfaction. No differences were found between PDE5-Is and PI as stand-alone treatments. None of the moderators (treatment duration, methodological quality, or researcher allegiance) altered the effects. CONCLUSIONS The combination of PI and PDE5-Is is a promising strategy for a favorable outcome in ED and can be considered as a first-choice option for ED patients. Stronger RCTs are required to confirm this initial finding. Schmidt HM, Munder T, Gerger H, Frühauf S, and Barth J. Combination of psychological intervention and phosphodiesterase-5 inhibitors for erectile dysfunction: A narrative review and meta-analysis. J Sex Med **;**:**-**.
Resumo:
Calcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin. Here we uncover a novel regulatory pathway for cyclic AMP (cAMP) signaling by the phosphatase calcineurin which is also evolutionarily conserved in Caenorhabditis elegans. We found that calcineurin binds directly to and inhibits the proteosomal degradation of cAMP-hydrolyzing phosphodiesterase 4D (PDE4D). We show that ubiquitin conjugation and proteosomal degradation of PDE4D are controlled by a cullin 1-containing E(3) ubiquitin ligase complex upon dual phosphorylation by casein kinase 1 (CK1) and glycogen synthase kinase 3beta (GSK3beta) in a phosphodegron motif. Our findings identify a novel signaling process governing G-protein-coupled cAMP signal transduction-opposing actions of the phosphatase calcineurin and the CK1/GSK3beta protein kinases on the phosphodegron-dependent degradation of PDE4D. This novel signaling system also provides unique functional insights into the complications elicited by CsA in transplant patients.
Resumo:
Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.
Resumo:
Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.
Resumo:
Prostaglandin H synthase (PGHS) is a key enzyme in biosynthesis of prostaglandins, thromboxane, and prostacyclin. It has two activities, cyclooxygenase and peroxidase. "PGHS" means PGHS-1. A current hypothesis considers the cyclooxygenase reaction to be a free radical chain reaction, initiated by interaction of the synthase peroxidase with hydroperoxides leading to the production of a tyrosyl free radical. According to this hypothesis, tyrosyl residue(s) may play a key role in the cyclooxygenase reaction. Tetranitromethane (TNM) can relatively selectively nitrate tyrosines at pH 8.0. The effect of TNM on both cyclooxygenase activity and peroxidase activity has been examined: reaction of the synthase holoenzyme with TNM at pH 8.0 led to inactivation of both activities, with the cyclooxygenase activity being lost rapidly and completely, while the peroxidase activity was lost more slowly. Indomethacin, a non-steroidal anti-inflammatory agent, can protect the synthase from the inactivation of TNM. Amino acid analyses indicated that a loss of tyrosine and formation of nitrotyrosine residues occurred during reaction with TNM, and that TNM-reacted holoenzyme with $<$10% residual cyclooxygenase activity had about 2.0 nitrotyrosine/subunit.^ PGH synthase is known to be an endoplasmic reticulum membrane-associated protein. Antibodies directed at particular PGHS peptide segments and indirect immunofluorescence have been used to characterize the membrane topology of crucial portions of PGHS. PGHS was expressed in COS-1 cells transfected with the appropriate cDNA. Stably-transfected human endothelial cells were also used for the topology study. The cells were treated with streptolysin-O, which selectively permeabilizes the plasma membrane, or with saponin to achieve general membrane disruption, before incubation with the antipeptide antibodies. Bound antipeptide antibody was stained by FITC-labelled secondary antibody and visualized by fluorescence microscopy. With the antipeptide antibodies against residues 51-66, 156-170 or 377-390, there was a significant reticular and perinuclear pattern of staining in cells permeabilized with saponin but not in cells permeabilized with SLO alone. Antibodies directed against the endogenous C-terminal peptide or against residues 271-284 produced staining in cells permeabilized with saponin, and also in a lower, but significant fraction of cells permeabilized with SLO. Similar results were obtained when COS-1 cells expressing recombinant PGHS with a viral reporter peptide inserted at the C-terminus were stained with antibody against the reporter epitope.^ The PGHS C-terminal sequence is similar to that of the consensus KDEL ER retention signal. The potential function of the PGHS C-terminus segment in ER retention was examined by mutating this segment and analyzing the subcellular distribution of the mutants expressed in COS-1 cells. None of the mutants had an altered subcellular distribution, although some had greatly diminished the enzyme activities. (Abstract shortened by UMI.) ^
Resumo:
Amine-containing phospholipid synthesis in Saccharomyces cerevisiae starts with the conversion of CDP-diacylglycerol (CDP-DAG) and serine to phosphatidylserine (PS) while phosphatidylinositol (PI) is formed from CDP-DAG and inositol (derived from inositol-1-phosphate). In this study a gene (CDS1) encoding CDP-DAG synthase in S. cerevisiae was isolated and identified. The CDS1 gene encodes the majority, if not all, of the synthase activity, and is essential for cell growth. Overexpression of the CDS1 gene resulted in an elevation in the apparent initial rate of synthesis and also steady-state level of PI relative to PS in both wild type yeast and the cds1 mutant. Down-regulation of CDS1 expression resulted in an inositol excretion phenotype and an opposite effect on the above phospholipid synthesis in the cds1 mutant. This regulation of phospholipid biosynthesis is mediated by changes of the phospholipid biosynthetic enzymes via a mechanism independent of the expression of the INO2-OPI1 regulatory genes. Reduction in the level of CDP-DAG synthase activity resulted in an increase in PS synthase activity which followed a similar change in the CHO1/PSS (encodes PS synthase) mRNA level. INO1 (encodes inositol-1-phosphate synthase) mRNA also increased but only after CDP-DAG synthase activity fell below the wild type level. PI synthase activity followed the decrease of the CDP-DAG synthase activity, but there was no parallel change in the level of PIS1 mRNA. A G$\sp{305}$/A$\sp{305}$ point mutation within the CDS1 gene which causes the cdg1 phenotype was identified. A human cDNA clone encoding CDP-DAG synthase activity was characterized by complementation of the yeast cds1 null mutant. ^
Resumo:
It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.
Resumo:
Progressive interstitial fibrosis and tubular atrophy (IF/TA) is a leading cause of chronic allograft dysfunction. Increased extracellular matrix remodeling regulated by matrix metalloproteases (MMPs) and their inhibitors (TIMPs) has been implicated in the development of IF/TA. The aim of this study was to investigate whether urinary/serum MMPs/TIMPs correlate with subclinical IF/TA detected in surveillance biopsies within the first 6months post-transplant. We measured eight different MMPs/TIMPs simultaneously in urine and serum samples from patients classified as normal histology (n=15), IF/TA 1 (n=15) and IF/TA 2-3 (n=10). There was no difference in urinary MMPs/TIMPs among the three groups, and only 1/8 serum MMPs/TIMPs (i.e. MMP-1) was significantly elevated in biopsies with IF/TA 2-3 (p=0.01). In addition, urinary/serum MMPs/TIMPs were not different between surveillance biopsies demonstrating an early development of IF/TA (i.e. delta IF/TA≥1 compared to a previous biopsy obtained three months before; n=11) and stable grade of IF/TA (i.e. delta IF/TA=0; n=20). Next, we investigated whether urinary/serum MMP/TIMP levels are elevated during acute subclinical tubulitis in surveillance biopsies obtained within the first 6months post-transplant (n=25). Compared to biopsies with normal histology, serum MMPs/TIMPs were not different; however, all urinary MMP/TIMP levels were numerically higher during subclinical tubulitis (MMP-1, MMP-7, TIMP-1 with p≤0.04). We conclude that urinary/serum MMPs/TIMPs do hardly correlate with existing or early developing IF/TA in surveillance biopsies obtained within the first 6months post-transplant. This could be explained by the dynamic process of extracellular matrix remodeling, which seems to be active during acute tubulo-interstitial injury/inflammation, but not in quiescent IF/TA.
Resumo:
Down syndrome (DS) is a common birth defect characterized by the trisomy of chromosome 21. DS-affected umbilical cords (UCs) of fetuses show altered architecture of the extracellular matrix. Overexpression of the chromosome 21 genes encoding the collagen type VI (COLVI) chains α1(VI) and α2(VI), COL6A1 and COL6A2, respectively, has also reported to occur in the nuchal skin of DS fetuses. The aim of this study was therefore to evaluate the COLVI content in euploid and DS-affected UCs and human skin fibroblasts, and to investigate the relationships between COLVI and hyaluronan (HA) and HA synthase-2 (HAS2). We found that the UCs of DS fetuses showed denser staining of COLVI and increased COL6A2 expression at both early and term gestational ages. In vitro expression studies in DS-derived fibroblasts showed similarly increased amounts of α1(VI) and α2(VI) chains at the protein and transcriptional level, supporting the hypothesis of the gene dosage effect. Furthermore, increased levels of HA and HAS2 were also found in DS-derived skin fibroblast cultures. Notably, silencing of COL6A2 in DS-derived cells resulted in downregulation of HAS2, with a simultaneous decrease in secreted HA. Exogenous addition of COLVI to normal fibroblasts did not have any effect on HAS2 expression. In conclusion, UCs and skin fibroblasts in DS show significant increases in COLVI and HA; the overexpression of COL6A2 in DS tissue and cells is closely related to the increased expression of HAS2. These data may explain the DS phenotypes and their effects in organ tissue maturation.
Resumo:
OBJECTIVE To measure concentrations of nitric oxide metabolites (nitrite-nitrate [NOt]) in cartilage, synovial membrane, and cranial cruciate ligament (CCL) in dogs and evaluate associations with osteoarthritis in dogs with CCL rupture. ANIMALS 46 dogs with CCL rupture and 54 control dogs without joint disease. PROCEDURE Tissue specimens for histologic examination and explant culture were harvested during surgery in the CCL group or immediately after euthanasia in the control group; NOt concentrations were measured in supernatant of explant cultures and compared among dogs with various degrees of osteoarthritis and between dogs with and without CCL rupture. RESULTS Osteoarthritic cartilage had significantly higher NOt concentration (1,171.6 nmol/g) than did healthy cartilage (491.0 nmol/g); NOt concentration was associated with severity of macroscopic and microscopic lesions. Synovial membrane NOt concentration did not differ between dogs with and without CCL rupture. Ruptured CCL produced less NOt than did intact ligaments. In control dogs, NOt concentrations were similar for intact ligaments (568.1 nmol/g) and articular cartilage (491.0 nmol/g). Synthesis of NOt was inhibited substantially by coincubation with inhibitors. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that NOt in canine joint tissues originates from the inducible nitric oxide synthase pathway. Nitric oxide metabolite production in cartilage was greater in dogs with osteoarthritis than in healthy dogs and was associated with lesion severity, suggesting that nitric oxide inhibitors may be considered as a treatment for osteoarthritis. The CCL produces substantial concentrations of NOt; the importance of this finding is unknown.
Resumo:
The immunosuppressive drugs cyclosporine A (CsA) and tacrolimus (FK506), also called calcineurin inhibitors, have truly revolutionized allograft transplantation. The introduction of CsA in 1976 was the first major advance in transplantation since the introduction of prednisone and azathioprine made allograft transplantation possible in the early 1950s and 1960s. FK506 was approved in 1994 and led to dramatic improvements in solid organ transplantation, allowing highly antigenic lymph node bearing allografts, such as the small bowel, to be transplanted. Recently, FK506 monotherapy has successfully allowed combined small bowel and partial abdominal wall transplantation in humans. The success of FK506 and CsA has made them key drugs in the modern era of transplantation. The purine synthesis inhibitor mycophenolate mofetil (MMF) was approved in 1995, and the drug Sirolimus (rapamycin) was introduced in 1999. Combining these drugs with calcineurin inhibitors has significantly reduced the incidence of acute rejection and improved solid organ allograft survival, with a reduction in adverse effects.