987 resultados para Acartia amboinensis, female, length


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths (200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients (1000, 2000 and 2500 W/(m(2).K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m(2).K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel homologous series of rod-shaped cyanophenyl alkoxy benzoate liquid crystalline compounds with lateral polar fluorine and chlorine substituent were prepared, and chemical structures of novel materials have been characterized by standard spectral technique and elemental analysis. The mesophase characterization was carried out using the combination of polarized optical microscopy and differential scanning calorimetry. All the compounds exhibit wide thermal range of enantiotropic SmA phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elaborate male traits with no apparent adaptive value may have evolved through female mate discrimination. Tusks are an elaborate male-only trait in the Asian elephant that could potentially influence female mate choice. We examined the effect of male body size, tusk possession and musth status on female mate choice in an Asian elephant population. Large/musth males received positive responses from oestrous females towards courtship significantly more often than did small/non-musth males. Young, tusked non-musth males attempted courtship significantly more often than their tuskless peers, and received more positive responses (though statistically insignificant) than did tuskless males. A positive response did not necessarily translate into mating because of mate-guarding by a dominant male. Female elephants appear to choose mates based primarily on traits such as musth that signal direct fertility benefits through increased sperm received than for traits such as tusks that may signal only indirect fitness benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor (I) is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate (I) as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric 0-H. ``.0 bonds R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the 0-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total (I) as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization (D(R), used previously to determine bond lengths. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal power-delay tradeoff is studied for a time-slotted independently and identically distributed fading point-to-point link, with perfect channel state information at both transmitter and receiver, and with random packet arrivals to the transmitter queue. It is assumed that the transmitter can control the number of packets served by controlling the transmit power in the slot. The optimal tradeoff between average power and average delay is analyzed for stationary and monotone transmitter policies. For such policies, an asymptotic lower bound on the minimum average delay of the packets is obtained, when average transmitter power approaches the minimum average power required for transmitter queue stability. The asymptotic lower bound on the minimum average delay is obtained from geometric upper bounds on the stationary distribution of the queue length. This approach, which uses geometric upper bounds, also leads to an intuitive explanation of the asymptotic behavior of average delay. The asymptotic lower bounds, along with previously known asymptotic upper bounds, are used to identify three new cases where the order of the asymptotic behavior differs from that obtained from a previously considered approximate model, in which the transmit power is a strictly convex function of real valued service batch size for every fade state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Merocyanine dyes that exhibit antithetic cyaninelike behaviour and giant first-order hyperpolarisability (beta) values have been designed. These cyanine-type dyes open up an intriguing route towards molecular-based electrooptic materials as well as new second-harmonic generation dyes for imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature-dependent photoluminescence and Raman spectra of In2O3 octahedrons synthesized by an evaporation condensation process. The luminescence obtained here is due to the defect-related deep level emission, which shows highly temperature-dependent behavior in 83-573 K range. Both the position as well as the intensity varies with temperature. Similarly, Raman spectroscopy in 83-303 K range shows temperature-dependent variation in peak intensity but no change in the peak position. Interestingly, the variation of intensity for different peaks is consistent with Placzek theory which invokes the possibility of temperature sensing. We demonstrate the reversibility of peak intensity with temperature for consecutive cycles and excellent stability of the octahedrons toward cryogenic temperature sensing. Overall, both the temperature-dependent photoluminescence and Raman spectra can be explored to determine temperature in the cryogenic range at micro/nano length scales. As an example, we evaluate the temperature-dependent Raman spectra of WO3 that undergoes a phase transition around 210 K and temperature-dependent luminescence of Rhodamine 6G (Rh6G) where intensity varies with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17 beta-estradiol administration to neonatal female rats. Main methods: Female Wistar rats which were administered 17 beta-estradiol on day 2 and 3 after birth were sacrificed 120 days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Key findings: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-alpha was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Significance: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents speaker normalization approaches for audio search task. Conventional state-of-the-art feature set, viz., Mel Frequency Cepstral Coefficients (MFCC) is known to contain speaker-specific and linguistic information implicitly. This might create problem for speaker-independent audio search task. In this paper, universal warping-based approach is used for vocal tract length normalization in audio search. In particular, features such as scale transform and warped linear prediction are used to compensate speaker variability in audio matching. The advantage of these features over conventional feature set is that they apply universal frequency warping for both the templates to be matched during audio search. The performance of Scale Transform Cepstral Coefficients (STCC) and Warped Linear Prediction Cepstral Coefficients (WLPCC) are about 3% higher than the state-of-the-art MFCC feature sets on TIMIT database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of micro-/nano-mechanics of materials has been driven, on the one hand by the development of ever smaller structures in devices, and, on the other, by the need to map property variations in large systems that are microstructurally graded. Observations of `smaller is stronger' have also brought in questions of accompanying fracture property changes in the materials. In the wake of scattered articles on micro-scale fracture testing of various material classes, this review attempts to provide a holistic picture of the current state of the art. In the process, various reliable micro-scale geometries are shown, challenges with respect to instrumentation to probe ever smaller length scales are discussed and examples from recent literature are put together to exhibit the expanse of unusual fracture response of materials, from ductility in Si to brittleness in Pt. Outstanding issues related to fracture mechanics of small structures are critically examined for plausible solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.