991 resultados para Absorption spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [5] it was shown that, for a standard quarter-car vehicle model and a road disturbance whose velocity profile is white noise of intensity A, the mean power dissipated in the suspension is equal to kA/2 where k is the tyre vertical stiffness. It is remarkable that the power dissipation turns out to be independent of all masses and suspension parameters. The proof in [5] makes use of a spectral formulation of white noise and is specific to linear systems. This paper casts the result in a more general form and shows that it follows from a simple application of Ito calculus. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of X-ray absorption fine structure measurements in manganites (La1-xHox)2/3Ca1/3MnO3 with 0.15 < x < 0.50 are presented. When LaMnO3 is doped with a, divalent element such as Ca2+, substituting for La3+, holes are induced in the filled Mn d orbitais. This leads to a, strong ferromagnetic coupling between Mn sites. Ca ions in La1-xCa xMnO3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn3+ and Mn4+). On the other hand, in manganites (La1-xHox)2/3Ca 1/3MnO3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the use of 242mAm as a nuclear fuel. Because of its very high thermal fission cross section and its large number of neutrons released per fission, it can be used for various unique applications, such as space propulsion, medical applications, and compact energy sources. Since the thermal absorption cross section of 242mAm is very high, the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. However, fast spectrum reactors are not readily available. In this paper, we explore the possibility of producing 242mAm in existing pressurized water reactors (PWRs) with minimal interference in reactor performance. As suggested in previous studies on the subject, the 242mAm breeding targets are shielded with strong thermal absorbers in order to suppress the thermal neutron flux that causes 242mAm destruction. Since 242mAm enrichment within the Am target mainly depends on the neutron energy distribution, which in turn depends on the Am target thickness and on the neutron filter cutoff energy (thermal absorber type), this unique Am target design was developed. In our study, Cd, Sm, and Gd were considered as thermal neutron filters, as suggested by Cesana et al. The most favorable results were obtained by irradiating Am targets covered either with Gd or Cd. In these cases, up to 8.65% enrichment of 242mAm is obtained after 4.5 yr (three successive PWR fuel cycles) of irradiation. It was also found that significant quantities [up to 1.3 kg/GW (electric)-yr] of 242mAm can be obtained in PWR reactors without notable interference with reactor performance. However, in order to maintain the original fuel cycle length, the enrichment of the driver (UO2) fuel must be increased by ∼1%, raised from the conventional 4.5 to 5.5%, depending on the thermal neutron filter used. The most important reactivity feedback coefficients for fuel assemblies containing the 242mAm breeding targets were evaluated and found to be close to those of a standard PWR. Another product of neutron capture in the 241Am reaction is 238Pu. It was found that in a typical 1000 MW (electric) PWR core with one-third of the fuel assemblies containing 241Am targets, up to 15.1 kg of 238Pu enriched to 80% can be produced per year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laser-diode parameters at which the steady-state regime of generation becomes unstable are analyzed within the framework of the mode-locking model. The crucial role of the transverse inhomogeneity of the field, pumping intensity, and spectrum width in developing the instabilities of the steady-state regime of generation is demonstrated. The calculated values of the instability threshold are shown to be consistent with the experimental results. © 2008 Springer Science+Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel compound for carbon capture and storage (CCS) applications, the 6H perovskite Ba4Sb2O9, was found to be able to absorb CO2 through a chemical reaction at 873 K to form barium carbonate and BaSb2O6. This absorption was shown to be reversible through the regeneration of the original Ba4Sb 2O9 material upon heating above 1223 K accompanied by the release of CO2. A combined synchrotron X-ray diffraction, thermogravimetric, and microscopy study was carried out to characterize first the physical absorption properties and then to analyze the structural evolution and formation of phases in situ. Importantly, through subsequent carbonation and regeneration of the material over 100 times, it was shown that the combined absorption and regeneration reactions proceed without any significant reduction in the CO2 absorption capacity of the material. After 100 cycles the capacity of Ba4Sb2O9 was ∼0.1 g (CO 2)/g (sorbent), representing 73% of the total molar capacity. This is the first report of a perovskite-type material showing such good properties, opening the way for studies of new classes of inorganic oxide materials with stable and flexible chemical compositions and structures for applications in carbon capture. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and sensitive method for separation and determination of Cr(VI) and Cr(III) in bottom mud of lake by flow injection on-line preconcentrtion system and GFAAS was developed. The available Cr(VI) and Cr(III) were extracted by HOAc or EDTA + NH4 NO3 and adsorbed simultaneously by an anion and a cation resin microclummn and then eluted simultaneously by 2 mol/L NH4 NO3 + 0.05 mol/L ascorbate and 2 mol/L H2SO4, respectively. The elution was performed for 50 s after adsorption for 2 min, and the efficiencies of elution were 85.4% - 94.8% and 96.7% - 106% for Cr(VI) and Cr(M) respectively. The detection limits of the method were 0.9 mu g/L and 2.7 mu g/L with relative standard deviations of 3.5% and 6.4% for the determination of Cr(VI) and Cr(III) in sample, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the photodegradation of the carcinogenic pollutant 2-naphthol in aqueous solution containing Aldrich humic acid (HA) and ferric ions (Fe(III)) under 125 W and 250 W high pressure mercury lamp (HPML, lambda >= 365 nm) irradiation was investigated. The photooxidation efficiencies were dependent on the pH values, light intensities and Fe(III)/HA concentration in the water, with higher efficiency at pHs 3-4, and 50 mu mol l(-1) Fe(III) with 20 mg l(-1) HA under 250 W HPML. The initial rate of photooxidation increases with increasing, the initial concentration of 2-naphthol from 10 mu mol l(-1) to 100 mu mol l(-1), while do not change at 50 and 100 mu mol l(-1). However, higher removal efficiency of 2-naphthol is achieved at its lower initial concentration of 10 mu mol l(-1), and initial rate of photooxidation is 0.193 mu mol l(-1) min(-1). Dissolved oxygen (DO) plays an important role in the system containing Fe(III)-HA complexes in which Fenton and photo-Fenton reactions were enhanced in the environment. Hydroxyl radicals produced in HA solution with or without ferric ions were determined by using benzene as free radical scavenger and phenol as scavenging products proportional to hydroxyl radicals. By using UV-Vis and excited fluorescence spectrum techniques, the main photooxidation products, which have higher absorption in the region of 240-340 nm, were found, and the mechanisms for the oxidative degradation is proposed.