988 resultados para Aboriginal virtual heritage
Resumo:
The garment we now recognise as the Aran jumper emerged as an international symbol of Ireland from the twin twentieth century transatlantic flows of migration and tourism. Its power as a heritage object derives from: 1) the myth commonly associated with the object, in which the corpse of a drowned fisherman is identified and claimed by his family due to the stitch patterns of his jumper (Pádraig Ó Síochain 1962; Annette Lynch and Mitchell Strauss 2014); 2) the meanings attached to those stitch patterns, which have been read, for example, as genealogical records, representations of the natural landscape and references to Christian and pre-Christian ‘Celtic’ religion (Heinz Kiewe 1967; Catherine Nash 1996); and 3) booming popular interest in textile heritage on both sides of the Atlantic, fed by the reframing of domestic crafts such as knitting as privileged leisure pursuits (Rachel Maines 2009; Jo Turney 2009). The myth of the drowned fisherman plays into transatlantic migration narratives of loss and reclamation, promising a shared heritage that needs only to be decoded. The idea of the garment’s surface acting as text (or map) situates it within a preliterate idyll of romantic primitivism, while obscuring the circumstances of its manufacture. The contemporary resurgence in home textile production as recreation, mediated through transnational online networks, creates new markets for heritage textile products while attracting critical attention to the processes through which such objects, and mythologies, are produced. The Aran jumper’s associations with kinship, domesticity and national character make it a powerful tool in the promotion of ancestral (or genealogical) tourism, through marketing efforts such as The Gathering 2013. Nash’s (2010; 2014) work demonstrates the potential for such touristic encounters to disrupt and enrich public conceptions of heritage, belonging and relatedness. While the Aran jumper has been used to commodify a simplistic sense of mutuality between Ireland and north America, it carries complex transatlantic messages in both directions.
Resumo:
Although technology can facilitate improvements in performance by allowing us to understand, monitor and evaluate performance, improvements must ultimately come from within the athlete. The first part of this article will focus on understanding how perception and action relate to performance from two different theoretical viewpoints. The first will be predominantly a cognitive or indirect approach that suggests that expertise and decision-making processes are mediated by athletes accruing large knowledge bases that are built up through practice and experience. The second, and alternative approach, will advocate a more 'direct' solution, where the athlete learns to 'tune' into the relevant information that is embedded in their relationship with the surrounding environment and unfolding action. The second part of the article will attempt to show how emerging virtual reality technology is revealing new evidence that helps us understand elite performance. Possibilities of how new types of training could be developed from this technology will also be discussed. © 2014 Crown Copyright.
Resumo:
This theoretical paper attempts to define some of the key components and challenges required to create embodied conversational agents that can be genuinely interesting conversational partners. Wittgenstein’s argument concerning talking lions emphasizes the importance of having a shared common ground as a basis for conversational interactions. Virtual bats suggests that–for some people at least–it is important that there be a feeling of authenticity concerning a subjectively experiencing entity that can convey what it is like to be that entity. Electric sheep reminds us of the importance of empathy in human conversational interaction and that we should provide a full communicative repertoire of both verbal and non-verbal components if we are to create genuinely engaging interactions. Also we may be making the task more difficult rather than easy if we leave out non-verbal aspects of communication. Finally, analogical peacocks highlights the importance of between minds alignment and establishes a longer term goal of being interesting, creative, and humorous if an embodied conversational is to be truly an engaging conversational partner. Some potential directions and solutions to addressing these issues are suggested.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology is extended to allow the virtual partitioning of volume cells. A valid description of the topology, including relative orientations, is maintained which enables downstream interrogations to be performed on the analysis topology description, such as determining if a specific meshing strategy can be applied to the virtual volume cells. As the virtual representation is a true non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. Therefore, the advantages of non-manifold modelling are exploited within the manifold modelling environment of a major commercial CAD system without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies here are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence.
Resumo:
With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.
In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.
Resumo:
A significant portion of UK’s infrastructures earthworks was built more than 100 years ago, without modern construction standards: poor maintenance and the change of precipitations pattern experienced in the past decades are currently compromising their stability, leading to an increasing number of failures. To address the need for a reliable and time-efficient monitoring of earthworks at risk of failure we propose here the use of two established seismic techniques for the characterization of the near surface, MASW and P-wave refraction. We have regularly collected MASW and P-wave refraction data, from March 2014 to February 2015, along 4 reduced-scale seismic lines located on the flanks of a heritage railway embankment located in Broadway, SW of England. We have observed a definite temporal variability in terms of phase velocities of SW dispersion curves and of P-wave travel times. The accurate choice of ad-hoc inversion strategies has allowed to reconstruct reliable VP and VS models through which it is potentially possible to track the temporal variations of geo-mechanical properties of the embankment slopes. The variability over time of seismic data and seismic velocities seems to correlate well with rainfall data recorded in the days immediately preceding the date of acquisition.
Resumo:
Accumulating evidence that working memory supports the ability to follow instructions has so far been restricted to experimental paradigms that have greatly simplified the practical demands of performing actions to instructions in everyday tasks. The aim of the present study was to investigate whether working memory is involved in maintaining information over the longer periods of time that are more typical of everyday situations that require performing instructions to command. Forty-two children 7–11 years of age completed assessments of working memory, a real-world following-instructions task employing 3-D objects, and two new computerized instruction-following tasks involving navigation around a virtual school to complete a sequence of practical spoken commands. One task involved performing actions in a single classroom, and the other, performing actions in multiple locations in a virtual school building. Verbal working memory was closely linked with all three following-instructions paradigms, but with greater association to the virtual than to the real-world tasks. These results indicate that verbal working memory plays a key role in following instructions over extended periods of activity.
Resumo:
The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.