964 resultados para AXIALLY DEFORMED-NUCLEI
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
The submucous plexus of the normal small and large intestine of Calomys callosus was studied by NADH and AChE histochemical techniques and by transmission and scanning electron microscopy. The plexus contains (mean ± SD) 7,488 ± 293 neurons/cm2 in the duodenum, 5,611 ± 836 in the jejunum, 2,741 ± 360 in the ileum, 3,067 ± 179 in the cecum, and 3,817 ± 256 in the proximal colon. No ganglia or nerve cell bodies were seen in the esophagus, stomach, distal colon or rectum. The neurons are pear-shaped with a round or oval nucleus and the neuronal cell profile areas were larger in the large intestine than in the small intestine. Most of the neurons display intense AChE activity in the cytoplasm. AChE-positive nerve fibers are present in a primary meshwork of large nerve bundles and in a secondary meshwork of finer nerve bundles. At the ultrastructural level, the ganglia are irregular in shape and covered with fibroblast-like cells. The nucleoplasm of the neurons is finely granular with a few condensations of chromatin attached to the nuclear envelope. In the neuropil numerous varicosities filled with vesicles of different size and electron densities are seen. The pre- and post-synaptic membrane thickenings are asymmetric. Characteristic glial cells with oval nuclei and few organelles are numerous. These data provide a detailed description of this submucosal meshwork.
Resumo:
Intra-amygdala infusion of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) prior to testing impairs inhibitory avoidance retention test performance. Increased training attenuates the impairing effects of amygdala lesions and intra-amygdala infusions of CNQX. The objective of the present study was to determine the effects of additional training on the impairing effects of intra-amygdala CNQX on expression of the inhibitory avoidance task. Adult female Wistar rats bilaterally implanted with cannulae into the border between the central and the basolateral nuclei of the amygdala were submitted to a single session or to three training sessions (0.2 mA, 24-h interval between sessions) in a step-down inhibitory avoidance task. A retention test session was held 48 h after the last training. Ten minutes prior to the retention test session, the animals received a 0.5-µl infusion of CNQX (0.5 µg) or its vehicle (25% dimethylsulfoxide in saline). The CNQX infusion impaired, but did not block, retention test performance in animals submitted to a single training session. Additional training prevented the impairing effect of CNQX. The results suggest that amygdaloid non-NMDA receptors may not be critical for memory expression in animals given increased training.
Resumo:
The neuroendocrine system regulates several organic functions such as reproduction, metabolism and adaptation to the environment. This system shows seasonal changes linked to the environment. The experimental model used in the present study was Lagostomus maximus maximus (viscacha). The reproduction of males of this species is photoperiod dependent. Twenty-four adult male viscachas were captured in their habitat at different times during one year. The adrenal glands were processed for light microscopy. Serial cuts were stained with hematoxylin-eosin for the morphometric study, and 100 nuclei of each zone of the adrenal cortex were counted per animal. Data were analyzed statistically by ANOVA and the Tukey test. The cells of the glomerulosa zone are arranged in a tube-shaped structure. The fasciculata zone has large cells with central nuclei and clearly visible nucleoli and with a vacuolar cytoplasm. In the reticularis zone there are two of types of cells, one with a nucleus of fine chromatin and a clearly visible nucleolus and the other with nuclear pycnosis. Morphometric analysis showed maximum nuclear volumes during the February-March period with values of 133 ± 7.3 µm3 for the glomerulosa, 286.4 ± 14.72 µm3 for the fasciculata, and 126.3 ± 9.49 µm3 for the reticularis. Minimum nuclear volumes were observed in August with values of 88.24 ± 9.9 µm3 for the glomerulosa, 163.7 ± 7.78 µm3 for the fasciculata and 64.58 ± 4.53 µm3 for the reticularis. The short winter photoperiod to which viscacha is subjected could inhibit the adrenal cortex through a melatonin increase which reduces the nuclear volume as well as the cellular activity.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group). The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group); intact animals were also subjected to anesthesia (intact control). Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI) which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa) and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury.
Resumo:
Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
Neonatal handling has long-lasting effects on behavior and stress reactivity. The purpose of the present study was to investigate the effect of neonatal handling on the number of dopaminergic neurons in the hypothalamic nuclei of adult male rats as part of a series of studies that could explain the long-lasting effects of neonatal stimulation. Two groups of Wistar rats were studied: nonhandled (pups were left undisturbed, control) and handled (pups were handled for 1 min once a day during the first 10 days of life). At 75-80 days, the males were anesthetized and the brains were processed for immunohistochemistry. An anti-tyrosine hydroxylase antibody and the avidin-biotin-peroxidase method were used. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted bilaterally in the arcuate, paraventricular and periventricular nuclei of the hypothalamus in 30-µm sections at 120-µm intervals. Neonatal handling did not change the number of TH-IR neurons in the arcuate (1021 ± 206, N = 6; 1020 ± 150, N = 6; nonhandled and handled, respectively), paraventricular (584 ± 85, N = 8; 682 ± 62, N = 9) or periventricular (743 ± 118, N = 7; 990 ± 158, N = 7) nuclei of the hypothalamus. The absence of an effect on the number of dopaminergic cells in the hypothalamus indicates that the reduction in the amount of neurons induced by neonatal handling, as shown by other studies, is not a general phenomenon in the brain.
Resumo:
Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.
Resumo:
In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA) muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8) and four (N = 9) months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively) and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively). Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003). Thus, we conclude that: a) muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b) periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c) periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.
Resumo:
Plasma and tissue testosterone concentrations were determined by radioimmunoassay in 12 eight-month-old sexually mature New Zealand White rabbits and evaluated for possible associations with spermatogenic efficiency as well as with volume density and number of Leydig cells. Testicular tissue was processed histologically and histometry was performed in order to quantify germ cells, Sertoli cells and Leydig cells. Spermatogenic efficiency, reported as the ratios among germ cells (spermatogonia, primary spermatocytes and round spermatids) and by the ratio of germ cells to Sertoli cells, was not associated with testosterone levels. However, Leydig cell parameters such as number of Leydig cells per gram of testis, total number of Leydig cells per testis and percent cell volume of Leydig cell nuclei were correlated significantly with testosterone levels. The statistically significant correlation (r = 0.82, P<0.05) observed between testosterone levels and the number of Leydig cells per gram of testis suggests that, in the rabbit, the latter parameter can serve as a criterion for monitoring testosterone levels in this species under normal conditions.
Resumo:
There is a close association between the location of angiotensin (Ang) receptors and many important brain nuclei involved in the regulation of the cardiovascular system. The present review encompasses the physiological role of Ang II in the brainstem, particularly in relation to its influence on baroreflex control of the heart and kidney. Activation of AT1 receptors in the brainstem by fourth ventricle (4V) administration to conscious rabbits or local administration of Ang II into the rostral ventrolateral medulla (RVLM) of anesthetized rabbits acutely increases renal sympathetic nerve activity (RSNA) and RSNA baroreflex responses. Administration of the Ang antagonist Sarile into the RVLM of anesthetized rabbits blocked the effects of Ang II on the RSNA baroreflex, indicating that the RVLM is the major site of sympathoexcitatory action of Ang II given into the cerebrospinal fluid surrounding the brainstem. However, in conscious animals, blockade of endogenous Ang receptors in the brainstem by the 4V AT1 receptor antagonist losartan resulted in sympathoexcitation, suggesting an overall greater activity of endogenous Ang II within the sympathoinhibitory pathways. However, the RSNA response to airjet stress in conscious rabbits was markedly attenuated. While we found no effect of acute central Ang on heart rate baroreflexes, chronic 4V infusion inhibited the baroreflex and chronic losartan increased baroreflex gain. Thus, brainstem Ang II acutely alters sympathetic responses to specific afferent inputs thus forming part of a potentially important mechanism for the integration of autonomic response patterns. The sympathoexcitatory AT1 receptors appear to be activated during stress, surgery and anesthesia.
Resumo:
Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.
Resumo:
Administration of pilocarpine causes epilepsy in rats if status epilepticus (SE) is induced at an early age. To determine in detail the electrophysiological patterns of the epileptogenic activity in these animals, 46 Wistar rats, 7-17 days old, were subjected to SE induced by pilocarpine and electro-oscillograms from the cortex, hippocampus, amygdala, thalamus and hypothalamus, as well as head, rostrum and vibrissa, eye, ear and forelimb movements, were recorded 120 days later. Six control animals of the same age range did not show any signs of epilepsy. In all the rats subjected to SE, iterative spike-wave complexes (8.1 ± 0.5 Hz in frequency, 18.9 ± 9.1 s in duration) were recorded from the frontal cortex during absence fits. However, similar spike-wave discharges were always found also in the hippocampus and, less frequently, in the amygdala and in thalamic nuclei. Repetitive or single spikes were also detected in these same central structures. Clonic movements and single jerks were recorded from all the rats, either concomitantly with or independently of the spike-wave complexes and spikes. We conclude that rats made epileptic with pilocarpine develop absence seizures also occurring during paradoxical sleep, showing the characteristic spike-wave bursts in neocortical areas and also in the hippocampus. This is in contrast to the well-accepted statement that one of the main characteristics of absence-like fits in the rat is that spike-wave discharges are never recorded from the hippocampal fields.