949 resultados para AXIAL CHIRALITY
Resumo:
The complex three-dimensional flowfield produced by secondary injection of hot gases in a rocket nozzle for thrust vector control is analyzed by solving unsteady three-dimensional Euler equations with appropriate boundary conditions. Various system performance parameters like secondary jet amplification factor and axial thrust augmentation are deduced by integrating the nozzle wall pressure distributions obtained as part of the flowfield solution and compared with measurements taken in actual static tests. The agreement is good within the practical range of secondary injectant flow rates for thrust vector control applications.
Resumo:
A comparative study of the correlations available in the literature is made to arrive at an appropriate pair for estimating the coolant-side and hot-gas-side heat transfer coefficients in the thrust chamber of a cryogenic engine. Based on this, the thermal analysis of a supercritical liquid hydrogen cooled engine is carried out. Results are presented for axial variation of heat transfer coefficients and temperature distributions for coolant and exposed wall. Tubular as well as milled channel configurations are considered for coolant flow.
Resumo:
The structure of [Cu4L2(bipy)4(µ3-OH)2][ClO4]4 containing a Vitamin B6 ligand, pyridoxine (5-hydroxy-6-methylpyridine-3,4-dimethanol, HL), and 2,2′-bipyridine (bipy) has been determined by single-crystal X-ray analysis. This is the first report on a copper(II) complex having a ‘stepped-cubane’ structure. The compound crystallizes in the triclinic space group P[1 with combining macron](Z= 1) with a= 11.015(3), b= 11.902(1), c= 13.142(2)Å, α= 105.07(1), β= 102.22(1) and γ= 99.12(1)°; R= 0.054). The co-ordination geometry around each copper is trigonally distorted square pyramidal. Two of the basal sites are occupied by bipyridyl nitrogens in a bidentate fashion. The remaining basal positions for Cu(1) are filled by a phenolic oxygen and a 4-hydroxymethyl oxygen of the L moiety, whereas for Cu(2) they are occupied by two µ3-OH oxygens. The axial sites are occupied by a µ3-OH oxygen and the 4-hydroxymethyl oxygen of the same pyridoxine for Cu(1) and Cu(2), respectively. Both the bridging nature of the 4-hydroxymethyl oxygen of the L moiety and the unsymmetrical bridging nature of the µ3-OH groups with axial–equatorial bridging are novel features. The structure is discussed in relation to stepped-cubane structures reported in the literature. A comparative study is also made with µ3-hydroxo-bridged copper(II) complexes. Both the plasticity effect of CuII and the stacking interactions between the various rings appear to be important in stabilizing this unusual structure.
Resumo:
Instability of laminated curved composite beams made of repeated sublaminate construction is studied using finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate which has a smaller number of plies. This paper deals with the determination of optimum lay-up for buckling by ranking of such composite curved beams (which may be solid or sandwich). For this purpose, use is made of a two-noded, 16 degress of freedom curved composite beam finite element. The displacements u, v, w of the element reference axis are expressed in terms of one-dimensional first-order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains, occurring in beams subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. The computer program developed has been used, after extensive checking for correctness, to obtain optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for typical curved solid/sandwich composite beams.
Resumo:
In this paper, a different type of cross flow dielectric barrier discharge (DBD) reactor was designed and tested. Here the gas flow is perpendicular to the barrier discharge electrode. Discharge plasma was utilized to oxidize NO contained in the exhaust gas to NO2 and subsequent NO2 removal can be improved using an adsorbent system. A detailed study of DeNO(X) in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/adsorbent processes. Activated alumina (Al2O3) and MS-13x were used as adsorbents at room temperature. The main emphasis is laid on the removal of NOX from the filtered diesel engine exhaust. In filtered exhaust environment, the cross flow reactor along with adsorbent exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at various gas flow rates, ranging from 2 l/min to 25 l/min. The discharge plasma-adsorbent assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities at β=6/g2=5.4, 5.5, 5.6. The lattice update was done using the hybrid Monte Carlo algorithm to include two flavors of dynamical Wilson fermions. We have explored quark masses in the range ms≤mq≤3ms. The results for the spectrum are similar to quenched simulations and mass ratios are consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar density show that the contribution of sea quarks is comparable to that of the valence quarks. This has important implications for the pion-nucleon σ term.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.
Resumo:
Reaction of formamide with Ni(NO3)(2)center dot 6H(2)O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)(2)(MeOH)(2) (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4'-bipyridyl (4,4'-bipy) yielded a three-dimensional structure Ni(HCOO)(2)(4,4'-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with T-c (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
For resonant column tests conducted in the flexure mode of excitation, a new methodology has been proposed to find the elastic modulus and associated axial strain of a cylindrical sample. The proposed method is an improvement over the existing one, and it does not require the assumption of either the mode shape or zero bending moment condition at the top of the sample. A stepwise procedure is given to perform the necessary calculations. From a number of resonant column experiments on aluminum bars and dry sand samples, it has been observed that the present method as compared with the one available in literature provides approximately (i) 5.9%-7.3% higher values of the elastic modulus and (ii) 6.5%-7.3% higher values of the associated axial strains.
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.