992 resultados para ATLANTIC PORTUGAL
Resumo:
Data are summarised for two Lagrangian experiments in the North Atlantic in early summer 1996. At 59 degreesN 20 degreesW, plankton dynamics was studied in an SF, tracer release experiment within a mesoscale eddy over a 9-day period. At 37 degreesN 20 degreesW, a second experiment followed a drifting buoy for 7 days. The data obtained in these two experiments have been averaged for 3 depth strata; the euphotic zone, the surface mixed layer (SML), and the seasonal thermocline immediately beneath the surface mixed layer. At 59 degreesN, the euphotic zone was only marginally deeper than the SML, but at 37 degreesN the SML was ca 30 m and the euphotic depth was ca 110 m. At 37 degreesN, nutrient concentrations in the SML were low but significant new production occurred in the thermocline because of light penetration into the nutricline. The particulate organic carbon (POC) concentration of the SML at 59 degreesN was 13-15 mu mol C kg(-1), but at 37 degreesN POC concentrations were 4 mu mol C kg(-1). These POC measurements include biota and detritus. As a way of investigating latitudinal differences in the plankton communities, estimates have been made of the carbon and nitrogen content of phytoplankton, bacterioplankton, microzooplankton and mesozooplankton. At both 59 degreesN and 37 degreesN, phytoplankton was the largest component, accounting for ca 50% of the planktonic biomass in the SML. At 59 degreesN, microzooplankton was 16% of the planktonic carbon, but at 37 degreesN this reduced to 8% of the total. Mesozooplankton was a relatively constant proportion (ca 20%) of the planktonic carbon in the SML at both 59 degreesN and 37 degreesN. Bacterioplankton was 14% of the biomass at 59 degreesN, increasing to 24% in the microbial loop-dominated system at 37 degreesN. Mean carbon fixation rate in the oligotrophic southern station was 24% of that at the north, with more carbon fixation below the SML at 37 degreesN than at 59 degreesN. Respiration rates showed little variation with latitude, and the rates at 37 degreesN were 80% of those at 59 degreesN. Nitrate and ammonium uptake rates were very low in the oligotrophic conditions in the SML at 37 degreesN, but nitrate uptake in the euphotic zone was comparable to that at 59 degreesN. Ammonium uptake by phytoplankton was also significantly greater at 37 degreesN, in both the euphotic zone and thermocline, but uptake in the SML was only 20% of that in the SML at 59 degreesN. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This study focuses on British attempts during the nineteenth century to outlaw the Atlantic Slave Trade internationally, for which it was successful, after seventy-five years of effort. It considers the lack of willingness to allow Great Britain, at the Congress of Vienna and during the Concert of Europe, to establish a universal treaty outlawing the slave trade. As a result, this mandated a change in British tactics, which would ultimately prove to be successful – the establishment of a web of bilateral agreements which came to included all maritime powers. The study then moves on to consider the evolution of these bilateral agreements while highlighting the relationship between Great Britain and States (Brazil, France, Portugal and the United States) which were obstinate in their willingness to join this bilateral regime. Finally, consideration is given to the move towards the establishment of the 1890 General Act of Brussels; and thus the conclusion of the decades long British foreign policy objective of a universal instrument meant to suppress the Atlantic Slave Trade.
Resumo:
Contemporary genetic structure of Atlantic salmon (Salmo salar L.) in the River Moy in Ireland is shown here to be strongly related to landscape features and population demographics, with populations being defined largely by their degree of physical isolation and their size. Samples of juvenile salmon were collected from the 17 major spawning areas on the river Moy and from one spawning area in each of five smaller nearby rivers. No temporal allele frequency differences were observed within locations for 12 microsatellite loci, whereas nearly all spatial samples differed significantly, suggesting that each was a separate population. Bayesian clustering and landscape genetic analyses suggest that these populations can be combined hierarchically into five genetically informative larger groupings. Lakes were found to be the single most important determinant of the observed population structure. Spawning area size was also an important factor. The salmon population of the closest nearby river resembled genetically the largest Moy population grouping. In addition, we showed that anthropogenic influences on spawning habitats, in this case arterial drainage, can affect relationships between populations. Our results show that Atlantic salmon biodiversity can be largely defined by geography, and thus, knowledge of landscape features (for example, as characterized within Geographical Information Systems) has the potential to predict population structure in other rivers without an intensive genetic survey, or at least to help direct sampling. This approach of combining genetics and geography, for sampling and in subsequent statistical analyses, has wider application to the investigation of population structure in other freshwater/anadromous fish species and possibly in marine fish and other organisms.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000-566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.
Resumo:
We present the first marine reservoir age and Delta R determination for the island of St. Helena using marine mollusk radiocarbon dates obtained from an historical context of known age. This represents the first marine reservoir a.-c and Delta R determination in the southern Atlantic Ocean within thousands of kilometers of the island. The depletion of C-14 in the shells indicates a rather larger reservoir age for that portion of the surface Atlantic than models indicate. The implication is that upwelling old water along the Namibian coast is transported for a considerable distance, although it is likely to be variable on a decadal timescale. An artilleryman's button, together with other artifacts found in a midden, demonstrate association of the mollusk shells with a narrow historic period of AD 1815-1835.
Resumo:
This article discusses a trial electronic exchange project developed between social work education departments in the Republic of Ireland and the USA. It outlines the contemporary significance and challenges of integrating global content into national social work curricula, which are often strongly tied to statutory or accreditation requirements. The mechanics of the exchange are explained and critiqued in detail. An illustrative example of how the transnational students discussed two questions is analyzed. The article finds that an international electronic exchange has great potential to make global social work real to students by allowing them to cross borders through cyberspace, however it requires careful planning and attention to cultural and educational system differences.
Resumo:
A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum ~21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.