996 resultados para ALPHA-AL2O3
Resumo:
Sulfur is a major poison to noble metal catalysts for deep aromatic hydrogenation in the petroleum refining industry. In order to study the sulfur resistance of Pd-based catalysts, a series of Pd, Cr, and PdCr catalysts supported on HY-Al2O3 were studied by NH3-TPD, pyridine-adsorption IR, TPR, IR spectra of adsorbed CO, and toluene hydrogenation in the presence of 3000 ppm sulfur as thiophene under the following conditions: 533-573 K, 4.2 MPa, and WHSV 4.0 h(-1). Cr has no influence on the acidity of the catalysts. TPR patterns and in situ IR spectra of adsorbed CO revealed a strong interaction between Cr and Pd, and the frequency shift of linear bonded CO on Pd indicates that the electron density of Pd decreases with the increase of the Cr/Pd atomic ratio. The catalytic performance of Pd, Cr, and PdCr catalysts shows that the sulfur resistance of Pd is strongly enhanced by Cr, and the activity reaches its maximum when the Cr/Pd atomic ratio equals 8. The active phase model "Pd particles decorated by Cr2O3" is postulated to explain the behavior of PdCr catalysts. (C) 2001 Academic Press.
Resumo:
A highly active catalyst, MnOx/TiO2-Al2O3, was prepared by impregnating MnOx species on TiO2-modified Al2O3. The TiO2 species in TiO2-Al2O3 support is in a monolayer dispersion, and the MnOx species is again highly dispersed on TiO2-Al2O3 Support. The total oxidation of chlorobenzene and o-dichlorobenzene on MnOx/TiO2-Al2O3 catalyst can be achieved at 300 degreesC and 250 degreesC respectively, at the space velocity of 8000 h(-1). The activity of MnOx/TiO2-Al2O3 catalyst (Mn loading 11.2 wt%) is gradually increased in the first 10-20 h and then keeps stable at least for the measured 52 h at 16,000 h(-1). Furthermore, no chlorinated organic byproducts are detected in the effluent during the oxidative destruction of chlorobenzene and o-dichlorobenzene. It is proposed that the partially chlorinated and highly dispersed manganese oxide on a monolayer TiO2-modified Al2O3 is responsible for the high and stable activity for the total oxidation of chlorinated aromatics. (C) 2001 Academic Press.