931 resultados para AIRWAY INFLAMMATION
Resumo:
An important step in the pathogenesis of multiple sclerosis is adhesion and transmigration of encephalitogenic T cells across brain endothelial cells (EC) which strongly relies on interaction with EC-expressed adhesion molecules. We provide molecular evidence that the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is a negative regulator of brain EC inflammation. The PPARgamma agonist pioglitazone reduces transendothelial migration of encephalitogenic T cells across TNFalpha-stimulated brain EC. This effect is clearly PPARgamma mediated, as lentiviral PPARgamma overexpression in brain EC results in selective abrogation of inflammation-induced ICAM-1 and VCAM-1 upregulation and subsequent adhesion and transmigration of T cells. We therefore propose that PPARgamma in brain EC may be exploited to target detrimental EC-T cell interactions under inflammatory conditions.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.
Resumo:
Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.
Resumo:
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.
Resumo:
OBJECTIVES: The aim of this study was to investigate the effect of a highly viscous, left-shifted hemoglobin vesicle solution (HbV) on the hypoxia-related inflammation and the microcirculation in critically ischemic peripheral tissue. DESIGN: Randomized prospective study. SETTING: University laboratory. SUBJECTS: Twenty-four male golden Syrian hamsters. INTERVENTIONS: Island flaps were dissected from the back skin of anesthetized hamsters for assessment with intravital microscopy. The flap included a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. One hour after completion of the preparation, the animals received an injection of 25% of total blood volume of 0.9% NaCl or NaCl suspended with HbVs at a concentration of 5 g/dL (HbV5) or 10 g/dL (HbV10). MEASUREMENTS AND MAIN RESULTS: Plasma viscosity was increased from 1.32 cP to 1.61 cP and 2.14 cP after the administration of HbV5 and HbV10, respectively (both p < .01). Both HbV solutions raised partial oxygen tension (Clark-type microprobes) in the ischemic tissue from approximately 10 torr to 17 torr (p < .01), which was paralleled by an increase in capillary perfusion by > 200% (p < .01). The 50% increase in macromolecular capillary leakage found over time in the control animals was completely abolished by the HbV solutions (p < .01), which was accompanied by a > 50% (p < .01) reduction in cells immunohistochemically stained for tumor necrosis factor-alpha and interleukin-6 and in leukocyte counts, whereas no such changes were observed in the anatomically perfused, normoxic tissue. CONCLUSIONS: Our study suggests that in critically ischemic, hypoxic peripheral tissue, hypoxia-related inflammation may be reduced by a top-load infusion of HbV solutions. We attributed this effect to a restoration of tissue oxygenation and an increase in plasma viscosity, both of which may have resulted in attenuation of secondary microcirculatory impairments.
Resumo:
Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.
Resumo:
BACKGROUND: The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. METHODS: We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. RESULTS: SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. CONCLUSION: Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.
Resumo:
RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.