963 resultados para 6-59
Resumo:
The two dimensional plane can be filled with rhombuses, so as to generate non-periodic tilings with 4, 6, 8, 10 and 12-fold symmetries. Some representative tilings constructed using the rule of inflation are shown. The numerically computed diffraction patterns for the corresponding tilings are also shown to facilitate a comparison with possible X-ray or electron diffraction pictures.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
A homologous series of alkyl 6-deoxy-beta-D-glucopyranoside amphiphiles was prepared,in an effort to identify the role of hydroxyl group in the mesomorphic behavior of alkyl glycosides. Synthesis was performed by a chlorination of the sugar moiety in alkyl-beta-D-glucopyranosides with methylsulfonyl chloride in DMF, followed by a metal mediated dehalogenation to secure alkyl 6-deoxy-beta-D-glucopyranosides, wherein the alkyl chain length varied from C-9 to C-16. The mesomorphic behavior of these 6-deoxy alkyl glycosides was assessed using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction method. Whereas the lower homologues exhibited a monotropic SmA phase till sub-ambient temperatures, the higher homologues formed a plastic phase. A partial interdigitized bilaye structure of SmA phase is inferred from experimental d-spacing and computationally derived lengths of the molecules. The results were compared with those of normal alkyl glucopyranosides, retained with hydroxyl groups at C-2-C-6 carbons, and alkyl 2-deoxy-glucopyranosides, devoid of a hydroxyl group at C-2 and the comparison showed important differences in the mesomorphic behavior.(C)2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.
Resumo:
The existence of icosahedral twins has been established in Al-10at.% Mn alloy. By a stereographic approach a close resemblance to the decagonal phase is pointed out. The simulation of twin diffraction patterns has been done based on the projection formalism. The physical significance of twinning in terms of hyperdimensional projection is discussed.
Resumo:
The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.
Resumo:
On hydrogenation of the Laves phase SmFe2, an amorphous SmFe2H3.6 (a-SmFe2H3.6) alloy was formed between 400 K and 500 K. The amorphous nature of the alloy was confirmed by X-ray diffraction, transmission electron microscopy and thermal analysis. However, SmFe2 absorbed hydrogen in the crystal state below 350 K and decomposed into SmH2 and α-Fe above 550 K. The crystallization behaviour of a-SmFe2H3.6 was investigated by differential scanning calorimetry in combination with electron microscopy. Even after considerable hydrogen desorption (Image ) by an endothermic reaction on heating, the amorphous state was retained. Crystallization of a-SmFe2H3.6 took place in two stages. The first stage involved the precipitation of α-Fe in the amorphous matrix. The second stage involved the decomposition of the remaining amorphous phase into the equilibrium phases SmH2 and SmFe2.
Resumo:
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 mu M. Kinetic analyses revealed that at a concentration below 0.5 mu M the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (K-a) and stoichiometry (r) for the enzyme-dye complex.
Resumo:
Thiosemicarbazones are having the ability to bind with metal and inhibit the enzyme ribonucleoside diphosphate reductase(RDR),an enzyme which is involved in the synthesis of DNA precursors in the mammalian cells.The title compound N-methyl-t-3-methyl-r-2, c-6-diphenylpiperidin-4-one thiosemicarbazone (NMMDPT), CCDC 218052, was prepared using Mannich reaction and characterized by X-ray diffraction methods.The crystal data are:C20H24N4S; M.W= 352.49, triclinic,space group P (1) over bar, a = 8.467(2)angstrom, b = 10.228(2)angstrom, c = 12.249(2)angstrom; lpha=92.595(3)degrees, beta=104.173(3)degrees, gamma=13.628(3)degrees; V=930.0(3)angstrom(3), Z=2, D-cal=1.259Mgm(-3),mu=0.184mm(-1),lambda (MoKalpha)=0.71073 angstrom, final R1 and wR2 are 0.0470 and 0.1052, respectively. The piperidine rings adopt chair conformation. The planar phenyl rings are oriented equatorially at 2,6-positions of the piperidine ring. The molecular packing can be viewed as dimers held together by two N-H...S types of intermolecular hydrogen bonds. Weak C-H...pi interactions also support the stability of the molecules in the crystal in addition to van der Waals forces. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
A Pd-6 molecular cage [{(tmen)Pd}(6)(bpy)(3)(tma)2)](NO3)(6) [1; where tmen = N,N,N,N-tetramethylethylene diamine, bpy = 4,4'-bipyridyl,and H(3)tma = trimesic acid] was prepared via the template-free three-component seff-assembly of a cis-blocked palladium(II) acceptorin combination with a tricarboxylate and a dipyridyl donor. Complex 1 represents the first example of a 3D palladium(II) cage of defined shape incorporating anionic and neutral linkers. Guest-induced exclusive formation of this cage was also monitored by an NMR study.