973 resultados para 44-388A
Resumo:
Films found on the windows of residential buildings have been studied. The main aim of the paper was to assess the roles of the films in the accumulation of potentially toxic chemicals in residential buildings. Thus the elemental and polycyclic aromatic hydrocarbon compositions of the surface films from the glass windows of eighteen residential buildings were examined. The presence of sample amounts of inorganic elements (4.0–1.2 × 106 μg m−2) and polycyclic aromatic hydrocarbons in the films (BDL - 620.1 ng m−2) has implications for human exposure and the fate of pollutants in the urban environment. To facilitate the interpretation of the results, data matrices consisting of the chemical composition of the films and the building characteristics were subjected to multivariate data analysis methods, and these revealed that the accumulation of the chemicals was strongly dependent on building characteristics such as the type of glass used for the window, the distance from a major road, age of the building, distance from an industrial activity, number of smokers in the building and frequency of cooking in the buildings. Thus, building characteristics which minimize the accumulation of pollutants on the surface films need to be encouraged.
Resumo:
Using six kinds of lattice types (4×4 ,5×5 , and6×6 square lattices;3×3×3 cubic lattice; and2+3+4+3+2 and4+5+6+5+4 triangular lattices), three different size alphabets (HP ,HNUP , and 20 letters), and two energy functions, the designability of proteinstructures is calculated based on random samplings of structures and common biased sampling (CBS) of proteinsequence space. Then three quantities stability (average energy gap),foldability, and partnum of the structure, which are defined to elucidate the designability, are calculated. The authors find that whatever the type of lattice, alphabet size, and energy function used, there will be an emergence of highly designable (preferred) structure. For all cases considered, the local interactions reduce degeneracy and make the designability higher. The designability is sensitive to the lattice type, alphabet size, energy function, and sampling method of the sequence space. Compared with the random sampling method, both the CBS and the Metropolis Monte Carlo sampling methods make the designability higher. The correlation coefficients between the designability, stability, and foldability are mostly larger than 0.5, which demonstrate that they have strong correlation relationship. But the correlation relationship between the designability and the partnum is not so strong because the partnum is independent of the energy. The results are useful in practical use of the designability principle, such as to predict the proteintertiary structure.
Resumo:
Mechanical properties have an important role in the fire safety design of cold-formed steel structures due to the rapid reduction in mechanical properties such as yield strength and elastic modulus under fire conditions and associated reduction to the load carrying capacities. Hence there is a need to fully understand the deterioration characteristics of yield strength and elastic modulus of cold-formed steels at elevated temperatures. Although past research has produced useful experimental data on the mechanical properties of cold-formed steels at elevated temperatures, such data do not yet cover different cold-formed steel grades and thicknesses. Therefore, an experimental study was undertaken to investigate the elevated temperature mechanical properties of two low and high strength steels with two thicknesses that are commonly used in Australia. Tensile coupon tests were undertaken using a steady state test method for temperatures in the range 20–700 °C. Test results were compared with the currently available reduction factors for yield strength and elastic modulus, and stress–strain curves, based on which further improvements were made. For this purpose, test results of many other cold-formed steels were also used based on other similar studies undertaken at the Queensland University of Technology. Improved equations were developed to predict the yield strength and elastic modulus reduction factors and stress–strain curves of a range of cold-formed steel grades and thicknesses used in Australia. This paper presents the results of this experimental study, comparisons with the results of past research and steel design standards, and the new predictive equations.
Resumo:
Journalism is an especially hazardous profession when it takes the reporter into zones of war and conflict. The Committee to Protect Journalists records that in 2010 44 journalists were killed while carrying out their duties. Some of these were reporting conflict in Afghanistan, Somalia, Iraq and elsewhere. Others were on assignments covering crime and corruption in Mexico, Russia, Venezuela*all places where telling truth to power can easily get you killed, beaten or banged up. In the last 20 years some 874 journalists have been killed on the job, and we salute them all. Journalists get criticised a lot by we scholars, and often for good reason. They can be villains, for sure, but they can also be heroes, when they lay down their lives in the pursuit of the truth. As this piece was being edited, photojournalists Tim Hetherington and Chris Hondros were killed in Libya.
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Overweight and obesity are a significant cause of poor health worldwide, particularly in conjunction with low levels of physical activity (PA). PA is health-protective and essential for the physical growth and development of children, promoting physical and psychological health while simultaneously increasing the probability of remaining active as an adult. However, many obese children and adolescents have a unique set of physiological, biomechanical, and neuromuscular barriers to PA that they must overcome. It is essential to understand the influence of these barriers on an obese child's motivation in order to exercise and tailor exercise programs to the special needs of this population. Chapter Outline • Introduction • Defining Physical Activity, Exercise, and Physical Fitness • Physical Activity, Physical Fitness, And Motor Competence In Obese Children • Physical Activity and Obesity in Children • Physical Fitness in Obese Children • Balance and Gait in Obese Children • Motor Competence in Obese Children • Physical Activity Guidelines for Obese Children • Clinical Assessment of the Obese Child • Physical Activity Characteristics: Mode • Physical Activity Characteristics: Intensity • Physical Activity Characteristics: Frequency • Physical Activity Characteristics: Duration • Conclusion
Resumo:
There are many reasons to look back in time such as trying to learn from the past or to avoid repeating it. History also tells us where we have come from and how this has shaped the current environment in which we live, socialise and work. Renal health care has also been shaped by the past, and insights from the past can help us to face the challenges of the present, and in turn to see how the future might be.
Resumo:
We suspect that the array of silly names used to refer to temporary staff worldwide may be indicative of the extent to which these nurses have been relegated to, and we would argue, remain in, a type of underclass – relatively unsupported by employers in terms of professional practice and ipso facto excluded from contributing professionally to team work, practice development, clinical governance and evidence based practice. This may be acceptable to some but in a climate of risk averseness and in the interests of strategic planning we would suggest it is an accident waiting to happen. The recent UK Royal College of Nursing (RCN) (Ball & Pike, 2006) survey of bank and agency nurses brings a welcome focus on a group of nurses that make a significant contribution to the smooth running of health services in many countries.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
The purpose of this preliminary study was to determine the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives were a) to introduce a categorization of load regime, b) to present some descriptors of each activity, and c) to report the results for a case. The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.
Resumo:
Verification testing of two model technologies in pilot scale to remove arsenic and antimony based on reverse osmosis and chemical coagulation/filtration systems was conducted in Spiro Tunnel Water Filtration Plant located in Park City, Utah, US. The source water was groundwater in abandoned silver mine, naturally contaminated by 60-80 ppb of arsenic and antimony below 10 ppb. This water represents one of the sources of drinking water for Park City and constitutes about 44% of the water supply. The failure to remove antimony efficiently by coagulation/filtration (only 4.4% removal rate) under design conditions is discussed in terms of the chemistry differences between Sb (III, V) and As (III, V). Removal of Sb(V) at pH > 7, using coagulation/filtration technology, requires much higher (50 to 80 times) concentration of iron (III) than As. The stronger adsorption of arsenate over a wider pH range can be explained by the fact that arsenic acid is tri-protic, whereas antimonic acid is monoprotic. This difference in properties of As(V) and Sb(V) makes antimony (V) more difficult to be efficiently removed in low concentrations of iron hydroxide and alkaline pH waters, especially in concentration of Sb < 10 ppb.