994 resultados para 347-M0061
Resumo:
Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.
Resumo:
以乙酰丙酮铁 (简称Fe) /三异丁基铝 (简称Al) /亚磷酸二烷基酯 (简称DP)为催化体系 ,对异戊二烯进行聚合 ,考察了不同DP(烷基为甲基、乙基、正丁基或异辛基 )、催化剂组成及反应条件对聚合的影响。结果表明 ,以亚磷酸二乙酯 (DEP)为第三组分的催化体系 ,在己烷中于相对较高温度 (5 0℃ )下的催化活性最高。催化剂最佳配比为Al/Fe(摩尔比 ) 1 5 ,DEP/Fe(摩尔比 ) 2 0。所得聚异戊二烯橡胶的 3 ,4-结构(含 1 ,2 -结构 )摩尔分数约为 60 % ,微观结构基本不受反应条件的影响。
Resumo:
W1-xAlx (x=0-0.86) alloys were synthesized by mechanically alloying the pure metal powder mixtures at designated compositions by conventional high-energy ball milling. The W-Al alloys were stable under high pressure and high temperature. The alloys were lighter than W. The hardness and oxidation resistance of the alloys was greatly improved compared to both W and Al. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A charge transfer salt, (Bu4N)(4) (C5H6)[(HSiMo11MoO40)-Mo-VI-O-V] has been photochemically synthesized from (Bu4N)(4)SiMo12O40 and 1.3-cyclopentadiene and Characterized, by elemental analysis, IR spectra, solid diffusion reflectance electronic spectra, CV and ESR. The X-ray crystal structure revealed that the title complex crystal data are as follows: triclinic, space group P (1) over bar, a = 14.347(3), b = 14.423(3), c = 27.158(5) Angstrom, alpha = 96.90(3), beta = 104.18(3), gamma = 98.20(3)degrees, V = 5322(2) Angstrom (3), Z = 2, M-r = 2855. 30, D-c = 1.782g.cm(-3), F(000) = 2860, R = 0.0719, wR = 0.198. The title compound is composed of 1.3-cyclopentadiene, four tetrabutylammonium and [(SiMo11MoO40)-Mo-VI-O-V](4-) anion.
Resumo:
以环戊二烯与 1 2 钼硅杂多四丁基铵为原料 ,采用光化学法合成了一种新型电荷转移盐 (Bu4N) 4(C5 H6 ) [HSiMoVI11MoVO40 ]。用元素分析、IR、CV、固体漫反射电子光谱、ESR进行了表征。X 射线晶体结构测定其晶体属三斜晶系 ,空间群P1 ,晶胞参数a =1 4.347(3) ,b =1 4.42 3(3) ,c =2 7.1 5 8(5 ) ,α =96 .90 (3) ,β =1 0 4.1 8(3) ,γ =98.2 0 (3)° ,V =5 32 2 (2 ) 3,Z =2 ,Mr=2 85 5 .30 ,Dc=1 .782 g·cm-3,F(0 0 0 ) =2 86 0 ,R =0 .0 71 9,wR =0 .1 983。标题化合物由 1个环戊二烯、4个Bu4N+阳离子和 1个 [SiMoVI11MoVO40 ]4 -阴离子构成。
Resumo:
The title compound, (H(2)en)(3)H3O {MO8V4O36 (VO4) (VO)(2)} . 4H(2)O, was hydrothermally synthesized and structurally characterized by means of IR, ESR spectrum and single crystal X-ray diffraction. It crystallized in a monoclinic system with space group P2(1)/c, a=1. 980 4(4) nm, b=2. 063 4(4) nm, c=1. 192 0(2) nm, (beta =94. 76(3)degrees and deep black colour. The compound contains V-centered bi-capped alpha -Keggin fragments {Mo8V7O42} that are linked together by edge-shared units (VO5)-O-N via V-O-V bonds, forming a chain.
Resumo:
Three title compounds were prepared and the structure of title compound 2 was characterized by IR, H-1 NMR, C-13 NMR, Sn-119 NMR spectroscopy and the crystal structure of compound 2a was determined by X-ray analysis with the final R indices[I >2 sigma (I)] R-1 = 0.0350 and R-2,R-omega = 0.0888. The crystal of compound 2a belongs to triclinic system, space group P1 with a = 1.0598(6) nm, b = 1.307 4(10) nm, c = 1.378 6(10) nm, alpha = 62.666(7)degrees, beta = 72.530(2)degrees, gamma = 80. 680(2)degrees, V = 1.618 0 nm(3), D-x = 1. 444 g (.) cm(-3), Z = 1, F (000) = 728. The bond length of Sn1-O1 is 0. 2076 nm and Sn1 . . . O2 distance is 0.301 3 nm. The coordination about the tin atom can be considered as a distorted tetrahedral. The detail values of H-1 NMR, C-13 NMR, Sn-119 NMR, (2)J(119Sn-1H) and J(119Sn-13C) were obtained. delta (119Sn) = 23.836, (2)J(119Sn-1H) = 88.0 Hz, (1)J(119Sn-13C) = 347.1 Hz, (2)J(119Sn-13C) = 45.6 Hz.
Resumo:
The title supramolecular compound, [HMDH2][(H2PMoMo11O40)-Mo-V] . 2AA . 3H(2)O . DMF (HMD = hexamethylene diamine; AA=acetaldehyde; DMF=N,N-dimethyl formamide), has been photochemically synthesized by using elemental analysis, IR, solid diffusion reflectance, electronic spectra, ESR spectra and X-ray single-crystal analysis. The crystallographic data: triclinic, P (1) over bar, a=14.092(2), b=14.347(3), c=14.358(3)Angstrom, alpha = 75.10(3), beta = 80.70(3), gamma = 80.73(3)degrees, V = 2746.6(10)Angstrom (3), Z = 2, M-r = 2081.68, D-c=2.517g/cm(3), F(000) =1970, mu (MoK alpha) =2.766mm(-1). The structure has been refined to R =0.0832 and wR=0.2638, by full-matrix least-squares method. The title compound is composed of hexamethylene diamine, two acetaldehyde molecules, three water molecules, one N,N-dimethylformamide and [(H2PMoMo11O40)-Mo-V](2-) heteropoly anion.
Resumo:
采用光化学法合成一种有机-无机电荷转移盐,(HMDH2)[H2PMo12O40]·AA·3H2O·DMF(HMD = 1,6-己二胺,AA = 乙醛,DMF = N,N-二甲基甲酰胺)超分子化合物。用元素分析,IR,固体漫反射电子光谱,ESR进行了表征。X-射线四圆衍射测定其晶体结构属三斜晶系,空间群 Pī,Mr=2081.68,晶胞参数a = 14.092(3),b =14.347(3),c =14.358(3)?,α=75.10(3),β=80.70(3),γ=80.73(3)°,V=2746.6(10)?3,Z=2,Dc=2.517g/cm3,F(000)=1970,μ(MoKα)=2.766mm- 1,全矩阵最小二乘法修正至R=0.0832,wR=0.2638。标题化合物是由1个质子化的1,6-己二胺、12-钼磷混合价杂多阴离子 [PMo12O40]4ˉ、3个水分子、2个乙醛分子和1个二甲基甲酰胺分子构成。
Resumo:
Surfactant-stabilized SnO2 nanoparticulate organosol was prepared. The organosol mixed with arachidic acid was spread on water surfaces in a Langmuir-Blodgett (LB) balance. Surface pressure versus surface area isotherms were determined. The surfactant-stabilized SnO2 nanoparticulate monolayers were transferred, layer-by-layer by the LB technique, to solid substrates. Then the multilayers were characterized by Fourier transform IR spectroscopy, UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results indicate that the multilayer is composed of SnO2 nanoparticles and arachidic acid. It forms a Z-type periodic structure with a long spacing of 7.48 nm, i.e. a kind of three-dimensional superlattice. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
无机—有机纳米复合材料综合了无机、有机和纳米材料的优良特性,将会形成重要的多功能新材料,具有良好的机械、光、电和磁等功能特性,在许多领域具有广阔应用前景。本文对近年来无机—有机纳米复合材料的制备、性质、应用等方面的发展进行了评述。
Resumo:
The crystal structure of the title complex salt has been determined by single-crystal X-ray structure analysis. The crystal data areas follows; Monoclinic, P2(1)/c, a=15.6480(10)Angstrom, b=16.7870(10)Angstrom, c=10.347(2)Angstrom, beta=90.790(10), V=2717.7(6)Angstrom(3), Z=3, and R=0.0333 for 4789 unique reflections. The complex anion has a pseudo-octahedral structure distorted more than the Cr-III and Co-III analogs, in which each, iminodiacetato ligand (ida(2-)) is coordinated in a facial fashion with the two N atoms in a cis configuration, resulting in an unsym-fac structure.
Resumo:
Three new lanthanide (Ln)-alkylaluminium (Al) bimetallic complexes with the formula [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AIR(2) . 2THF](2) (Ln = Nd, Y, R=i-C4H9 (i-Bu); Ln=Eu, R=C2H5(Et); THF=tetrahydrofuran) were synthesized by the reaction of Ln(CF,CO,), (Ln=Nd, Y) with HAI (i-Bu)(2) and of Eu(CF3CO2)(3) with AlEt(3), respectively. Their crystal structures were determined by X-ray diffraction at 233 K. [(mu-CF3CO2)(2)Nd (mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Nd-Al) and [(mu-CF3CO2)(2)Y(mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Y-Al) are isomorphous and crystallize in space group
with a=12.441(3) Angstrom [12.347(5) Angstrom for Y-Al], b=12.832(3) Angstrom [12.832(4) Angstrom], c=11.334(3) Angstrom [11.292(8) Angstrom], alpha=104.93 (2)degrees [104.45(4)degrees], beta=98.47(2)degrees [98.81(4)degrees], gamma=64.60(2)degrees [64.30(3)degrees], R=0.519 [0.113], R(w)=0.0532 [0.110], Z=1 and [(mu-CF3CO2)(2)Eu(CF3CHO2)AlEt(2) . 2THF](2)(Eu-Al) in space group P2(1)/n with a=11.913(6) Angstrom, b=14.051(9) Angstrom, c=17.920(9) Angstrom, alpha=101.88(11)degrees, beta=gamma=90 degrees, R=0.0509, R(w)=0.0471 and Z=2. The six CF3CO2- (including CF3CHO2-) of each complex, among which pairs are equivalent, coordinated to Ln and Al in three patterns: (A) the two oxygen atoms in one of the three CF3CO2- type coordinated to two different Ln; (B) the two oxygen atoms in the second of CF3CO2- type coordinated to Ln and Al, respectively; (C) one of the two oxygen atoms in the third CF3CO2- type bidentately coordinated to two Ln and another oxygen coordinated to Al and one of the two Ln, respectively. Unlike types A and B, in type C the carboxyl carbon with a hydrogen atom bonded to it was found to appear as an sp(3)-hybridized configuration rather than an sp(2)-one. 1D and 2D NMR results further confirmed the existence of such a disproportionated CF3CHO2- ligand. Methyl methacrylate (MMA) and epichlorohydrin (ECH) could be polymerized by Y-Al or Eu-Al as a single-component catalyst and highly syndiotactic poly(MMA) was obtained. THF could also be polymerized by Y-Al in the presence of a small amount of ECH.