947 resultados para 270203 Population and Ecological Genetics
Resumo:
Sequence variation in the mitochondrial control region was studied in the Mediterranean rainbow wrasse (Coris julis), a species with pronounced pelagic larval phase inhabiting the Mediterranean Sea and the adjacent coastal eastern Atlantic Ocean. A total of 309 specimens from 19 sampling sites were analysed with the aim of elucidating patterns of molecular variation between the Atlantic and the Mediterranean as well as within the Mediterranean Sea. Phylogeographic analyses revealed a pronounced structuring into a Mediterranean and an Atlantic group. Samples from a site at the Moroccan Mediterranean coast in the Alboran Sea showed intermediate frequencies of “Mediterranean” and “Atlantic” haplotypes. We recognised a departure from molecular neutrality and a star-like genealogy for samples from the Mediterranean Sea, which we propose to have happened due to a recent demographic expansion. The results are discussed in the light of previous studies on molecular variation in fish species between the Atlantic and the Mediterranean and within the Mediterranean.
Resumo:
Genetic introgression of aquaculture stocks in local forms is well documented in many fish species but their evolutionary consequences for the local populations have not been thoroughly explored. Due to its wide geographical range, the existence of many locally adapted forms and the frequent occurrence of introgression of aquaculture stocks in local forms, brown trout represents the ideal system to study the effects of such introgressions. Here, we focus on a group of rivers and streams in Sicily (Italy), and, by using molecular tools, we show that autochthonous populations are probably derived from the Southern Atlantic clade, which is present in the Iberian peninsula and North Africa. Three out of the four studied rivers reveal signs of genetic introgression of domestic stocks. Finally, by using advanced geometric morphometric analyses, we show that genetic introgression produces a higher degree of morphological variability relative to that observed in non-introgressed populations.
Resumo:
Global amphibian decline by chytridiomycosis is a major environmental disaster that has been attributed to either recent fungal spread or environmental change that promotes disease. Here, we present a population genetic comparison of Batrachochytrium dendrobatidis isolates from an intensively studied region of frog decline, the Sierra Nevada of California. In support of a novel pathogen, we find low diversity, no amphibian-host specificity, little correlation between fungal genotype and geography, local frog extirpation by a single fungal genotype, and evidence of human-assisted fungus migration. In support of endemism, at a local scale, we find some diverse, recombining populations. Therefore neither epidemic spread nor endemism alone explains this particular amphibian decline. Recombination raises the possibility of resistant sporangia and a mechanism for rapid spread as well as persistence that could greatly complicate global control of the pathogen.
Resumo:
Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.
Resumo:
A major outcome of this project has been the identification and prioritisation of the major management issues related to the ecological impacts of fish stocking and the elucidation of appropriate research methodologies that can be used to investigate these issues. This information is paramount to development of the relevant research projects that will lead to stocking activities aligned with world’s best practice, a requisite for ecologically sustainable recreational freshwater fisheries. In order to quantify the major management issues allied to the sustainability of freshwater fish stocking, stakeholders from around Australia were identified and sent a questionnaire to determine which particular issues they regarded as important. These stakeholders included fisheries managers or researchers from Federal, Territory and State jurisdictions although others, including representatives from environment and conservation agencies and peak recreational fishing and stocking groups were also invited to give their opinions. The survey was completed in late 2007 and the results analysed to give a prioritized list of key management issues relating to the impacts of native fish stocking activities. In the analysis, issues which received high priority rankings were flagged as potential topics for discussion at a future expert workshop. Identified high priority issues fell into the following core areas: marking techniques, genetics, population dynamics, introduction of pathogens and exotic biological material and ecological, biological and conservation issues. The next planned outcome, determination of the most appropriate methodologies to address these core issues in research projects, was addressed through the outputs of an expert workshop held in early 2008. Participants at this workshop agreed on a range of methodologies for addressing priority sustainability issues and decided under what circumstances that these methodologies should be employed.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [CI] .27 - .59), similar to IHS-based migraine diagnosis (h2 = .49, 95% CI .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h2 = .33, 95% CI .00-.60), but not the LCA-based classification (h2 = .51, 95% CI .23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.
Resumo:
Nested association mapping (NAM) offers power to dissect complex, quantitative traits. This study made use of a recently developed sorghum backcross (BC)-NAM population to dissect the genetic architecture of flowering time in sorghum; to compare the QTL identified with other genomic regions identified in previous sorghum and maize flowering time studies and to highlight the implications of our findings for plant breeding. A subset of the sorghum BC-NAM population consisting of over 1,300 individuals from 24 families was evaluated for flowering time across multiple environments. Two QTL analysis methodologies were used to identify 40 QTLs with predominately small, additive effects on flowering time; 24 of these co-located with previously identified QTL for flowering time in sorghum and 16 were novel in sorghum. Significant synteny was also detected with the QTL for flowering time detected in a comparable NAM resource recently developed for maize (Zea mays) by Buckler et al. (Science 325:714-718, 2009). The use of the sorghum BC-NAM population allowed us to catalogue allelic variants at a maximal number of QTL and understand their contribution to the flowering time phenotype and distribution across diverse germplasm. The successful demonstration of the power of the sorghum BC-NAM population is exemplified not only by correspondence of QTL previously identified in sorghum, but also by correspondence of QTL in different taxa, specifically maize in this case. The unification across taxa of the candidate genes influencing complex traits, such as flowering time can further facilitate the detailed dissection of the genetic control and causal genes.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Ilmasto vaikuttaa ekologisiin prosesseihin eri tasoilla. Suuren mittakaavan ilmastoprosessit, yhdessä ilmakehän ja valtamerien kanssa, säätelevät paikallisia sääilmiöitä suurilla alueilla (mantereista pallopuoliskoihin). Tämä väistöskirja pyrkii selittämään kuinka suuren mittakaavan ilmasto on vaikuttanut tiettyihin ekologisiin prosesseihin pohjoisella havumetsäalueella. Valitut prosessit olivat puiden vuosilustojen kasvu, metsäpalojen esiintyminen ja vuoristomäntykovakuoriaisen aiheuttamat puukuolemat. Suuren mittakaavan ilmaston löydettiin vaikuttaneen näiden prosessien esiintymistiheyteen, kestoon ja levinneisyyteen keskeisten sään muuttujien välityksellä hyvin laajoilla alueilla. Tutkituilla prosesseilla oli vahva yhteys laajan mittakaavan ilmastoon. Yhteys on kuitenkin ollut hyvin dynaaminen ja muuttunut 1900-luvulla ilmastonmuutoksen aiheuttaessa muutoksia suuren mittakaavan ja alueellisten ilmastoprosessien välisiin sisäisiin suhteisiin.
Resumo:
Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.
Resumo:
Natural selection generally operates at the level of the individual, or more specifically at the level of the gene. As a result, individual selection does not always favour traits which benefit the population or species as a whole. The spread of an individual gene may even act to the detriment of the organism in which it finds. Thus selection at the level of the individual can affect processes at the level of the organism, group or even at the level of the species. As most behaviours ultimately affect births, deaths and the distribution of individuals, it seems inevitable that behavioural decisions will have an impact on population dynamics and population densities. Behavioural decisions can often involve costs through allocation of energy into behavioural strategies, such as the investment into armaments involved in fighting over resources or increased mortality due to injury or increased predation risk. Similarly, behaviour may act o to benefit the population, in terms of higher survival and increased fecundity. Examples include increased investment through parental care, choosing a mate based on the nuptial gifts they may supply and choosing territories in the face of competition. Investigating the impact of behaviour on population ecology may seem like a trivial task, but it is likely to have important consequences at different levels. For example, antagonistic behaviour may occasionally become so extreme that it increases the risk of extinction, and such extinction risk may have important implications for conservation. As a corollary, any such behaviour may also act as a macroevolutionary force, weeding out populations with traits which, whilst beneficial to the individuals in the short term, ultimately result in population extinction. In this thesis, I examine how behaviours, specifically conflict and competition over a resource and aspects of behaviour involved in sexual selection, can affect population densities, and what the implications are for the evolution and ecology of the populations in question. It is found that both behaviours related to individual conflict and mating strategies can have an effect at the level of the population, but that various factors, such as a feedback between selection and population densities or macroevolution caused by species extinctions, may act to limit the intensity of conflicts that we observe in nature.
Resumo:
Predation forms one of the main selective forces in nature and in a vast number of prey species the behavioural responses form the main way to avoid predation. World wide numerous captive breeding programs are used to produce fish and other animal species for conservational reintroductions. However, rearing animals in the absence of predators in captivity has been shown to weaken their predator avoidance skills and lead to behavioural divergence between wild and captive-bred populations. In my thesis I studied the effects of predator odour exposures on antipredator behavioural and physiological responses of captive reared Saimaa Arctic charr. This charr population is the most endangered fish population in Finland and a sample of the remaining population has been taken to captive breeding and used for an extensive reintroduction program. Lowered responsiveness to predators is probably one of the major reasons for the poor survival probability of the charr after release into the wild. The main aims of my thesis were to explore the reasons for behavioural phenotypic variation in this charr population and whether naïve charr young could be trained to recognise their natural predators. The predator species in my thesis were burbot (Lota lota) and pikeperch (Sander lucioperca). In my thesis I showed that the captive-bred charr responded to chemical cues from burbot and pikeperch, but the magnitude of responses was linked to the predator species. The burbot odour increased the spatial odour avoidance of the charr young. On the other hand, in the pikeperch treatment charr reduced their relative swimming activity and tended to show more freezing behaviour relative to the burbot treatment. It seems evident that these different responses are related to the different hunting tactics of predator species. Furthermore, I detected wide between-family differences in antipredator responsiveness (i.e. inherited variation in antipredator behaviours) in this captive stock. Detected differences were greater in the response towards burbot than towards pikeperch. These results, in addition to predator-specific antipredator responses, suggest that there is a clear inherited component in antipredator responsiveness in Saimaa charr population and that the detected inherited differences could explain a part of the behavioural phenotypic variation in this population. In my thesis I also found out that both social learning and direct exposure to live predators enhance the antipredator responsiveness of charr young. In addition, I obtained indications that predator odour exposures (i.e. life-skills training) in alevin and fry stages can fine-tune the innate antipredator responsiveness of charr. Thus, all these methods have the potential to enhance the innate antipredator responsiveness of naïve charr young, possibly also improving the post-release survival of these trained individuals in the wild. However, the next logical phase would be to carry out large scale survival studies in the wild to test this hypothesis. Finally, the results of my thesis emphasize that possible long-term life-skills training methods should take into account not only the behavioural but also the physiological effects of training.
Resumo:
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.