988 resultados para 240101 Astronomy and Astrophysics
Resumo:
Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.
Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.
Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.
Resumo:
ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.
Resumo:
We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.
Resumo:
Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations.
Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes.
Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions.
Resumo:
Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.
Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.
Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.
Resumo:
Aims. 2P/Encke is a short period comet that was discovered in 1786 and has been extensively observed and studied for more than 200years. The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even thoughthe comet’s activity is not strong enough to explain the number of observed meteors. Various small near-Earth objects (NEOs) havebeen discovered with orbits that can be linked to 2P/Encke and the Taurid meteoroid stream. Maribo and Sutter’s Mill are CM typecarbonaceous chondrite that fell in Denmark on January 17, 2009 and April 22, 2012, respectively. Their pre-atmospheric orbits placethem in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P/Encke could be the parentbody of CM chondrites.
Methods. To investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs, and CM chondritesexists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P/Enckeand 10 NEOs on August 2, 2011 with the FORS instrument at the 8.2 m Very Large Telescope on Cerro Paranal (Chile).
Results. Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P/Encke andthe NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydratedminerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at λ < 800nm. Apart for 2003 QC10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible withthat of 2P/Encke. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at λ > 800 nm, which is notseen in 2P/Encke, which suggests that they are not related.
Conclusions. Despite similar orbits, we find no spectroscopic evidence for a link between 2P/Encke, the Taurid complex NEOs andthe Maribo and Sutter’s Mill meteorites. However, we cannot rule out a connection to the meteorites either, as the spectral differencesmay be caused by secondary alteration of the surfaces of the NEOs.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
Context. Close-in, giant planets are expected to influence their host stars via tidal or magnetic interaction. But are these effects in X-rays strong enough in suitable targets known so far to be observed with today's instrumentation? Aims: The υ And system, an F8V star with a Hot Jupiter, was observed to undergo cyclic changes in chromospheric activity indicators with its innermost planet's period. We aim to investigate the stellar chromospheric and coronal activity over several months. Methods: We therefore monitored the star in X-rays as well as at optical wavelengths to test coronal and chromospheric activity indicators for planet-induced variability, making use of the Chandra X-ray Observatory as well as the echelle spectrographs FOCES and HRS at Calar Alto (Spain) and the Hobby-Eberly Telescope (Texas, US). Results: The stellar activity level is low, as seen both in X-rays as in Ca ii line fluxes; the chromospheric data show variability with the stellar rotation period. We do not find activity variations in X-rays or in the optical that can be traced back to the planet. Conclusions: Gaining observational evidence of star-planet interactions in X-rays remains challenging.
Resumo:
Aims: X-ray emission is an important diagnostics to study magnetic activity in very low mass stars that are presumably fully convective and have an effectively neutral photosphere. Methods: We investigate an XMM-Newton observation of SCR 1845-6357, a nearby, ultracool M 8.5 / T 5.5 dwarf binary. The binary is unresolved in the XMM detectors, but the X-ray emission is very likely from the M 8.5 dwarf. We compare its flaring emission to those of similar very low mass stars and additionally present an XMM observation of the M 8 dwarf VB 10. Results: We detect quasi-quiescent X-ray emission from SCR 1845-6357 at soft X-ray energies in the 0.2-2.0 keV band, as well as a strong flare with a count rate increase of a factor of 30 and a duration of only 10 min. The quasi-quiescent X-ray luminosity of log LX = 26.2 erg/s and the corresponding activity level of log LX/Lbol = -3.8 point to a fairly active star. Coronal temperatures of up to 5 MK and frequent minor variability support this picture. During the flare, which is accompanied by a significant brightening in the near-UV, plasma temperatures of 25-30 MK are observed and an X-ray luminosity of LX = 8 × 1027 erg/s is reached. Conclusions: The source SCR 1845-6357 is a nearby, very low mass star that emits X-rays at detectable levels in quasi-quiescence, implying the existence of a corona. The high activity level, coronal temperatures and the observed large flare point to a rather active star, despite its estimated age of a few Gyr.
Resumo:
Context. The ESA Rosetta spacecraft, currently orbiting around comet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments,particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution.
Aims. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014.
Methods. A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately.
Results. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is α = −3, instead of α = −2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment.
Resumo:
Logo for the school of Physics and Astronomy in Inkscape SVG, PDF and high-resolution PNG format
Resumo:
The VISIR instrument for the European Southern Observatory (ESO) Very Large Telescope (VLT) is a thermal-infrared imager and spectrometer currently being developed by the French Service d'Astrophysique of CEA Saclay, and Dutch NFRA ASTRON Dwingeloo consortium. This cryogenic instrument will employ precision infrared bandpass filters in the N-( =7.5-14µm) and Q-( =16-28µm) band mid-IR atmospheric windows to study interstellar and circumstellar environments crucial for star and planetary formation theories. As the filters in these mid-IR wavelength ranges are of interest to many astronomical cryogenic instruments, a worldwide astronomical filter consortium was set up with participation from 12 differing institutes, each requiring instrument specific filter operating environments and optical metrology. This paper describes the design and fabrication methods used to manufacture these astronomical consortium filters, including the rationale for the selection of multilayer coating designs, temperature-dependant optical properties of the filter materials and FTIR spectral measurements showing the changes in passband and blocking performance on cooling to <50K. We also describe the development of a 7-14µm broadband antireflection coating deposited on Ge lenses and KRS-5 grisms for cryogenic operation at 40K
Resumo:
We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.
Resumo:
This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be its low as 28.4 B mag arcsec(-2). Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.
Resumo:
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.