940 resultados para 2-Nitrobenzoic Acid
Resumo:
Further purification of indoleacetaldoxime (IAOX) hydro-lyase from Gibberella fujikuroi by DEAE-cellulose chromatography is described. The purified enzyme was activated by dehydroascorbic acid (DHA), ascorbic acid (AA), and pyridoxal phosphate (PALP) and was inhibited by thiol compounds and thiol reagents including phenylthiocyanate. Ferrous ions but not ferric ions activated the purified enzyme. The enzyme was activated by dihydrofolic acid but inhibited by tetrahydrofolic acid. Phenylacetaldoxime, a competitive inhibitor, afforded partial protection of the enzyme from the action of N-ethylmaleimide suggesting the involvement of a thiol function at the active site or substrate-binding site. The inhibition of the enzyme by 2,3-dimercaptopropanol was reversed by DHA, PALP, or frozen storage. KCN inhibition of the enzyme was reversed by PALP. NaBH4 reduction of the purified enzyme in the presence of PALP gave an active enzyme which was further activated by PALP or DHA but not by ferrous ions. These results suggested a "structural" role for PALP in the activity of IAOX hydro-lyase. Dilute solutions of the purified enzyme, obtained during DEAE-cellulose chromatography and concentrated using sucrose, showed enhanced activity upon frozen storage and thawing. The increase in activity of the enzyme during certain culture conditions, the activation and inhibition of the enzyme by several unrelated compounds, and the effect of freezing indicate that IAOX hydro-lyase is probably a metabolically regulated enzyme with a structure composed of subunits.
Resumo:
The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.
Resumo:
Pseudo-acid chlorides of five 4′-substituted o-benzoylbenzoic acids are converted into a mixture of dilactones with sodium iodide in acetone. The meso-isomer is always formed to a larger extent than the (±)-mixture. These results imply that the radicals involved are not planar.
Resumo:
Five-coordinate, neutral transition metal complexes of newly designed pyridine-2-ethyl-(3-carboxyhdeneamino)-3-(2-phenyl)-1,2-dihydroquinazoli n-4(3H)-one (L) were synthesized and characterized The structure of ligand is confirmed by single crystal X-ray diffraction studies The compounds were evaluated for the anti-inflammatory activity by carrageenan-induced rat paw edema model while their analgesic activity was determined by acetic acid-induced writhing test in mice wherein the transition metal complexes were found to be more active than the free ligand (C) 2010 Elsevier Masson SAS All rights reserved.
Resumo:
The reaction between ascorbic acid and ammonium hexa nitrato cerate was studied potentiometrically in the mixed solvent glacial acetic acid acetonitrile medium. It was found that one mole of ascorbic acid consumes four equivalents of cerate in non-aqueous medium. This reaction can be made use of to estimate potentiometrically ascorbic acid with ammonium nitrato cerate in non-aqueous media, using either glass or antimony as reference electrode and platinum as indicator electrode.
Resumo:
VITAMIN A and cholesterol esters have been shown to undergo extensive hydrolysis in the lumen of the small intestine during the process of absorption; they are re-esterified to appear in the lymph mostly as esters1,2. However, the vitamin A esters of the lymph, blood and liver of the rat are formed by long-chain fatty acids3 and in the normal rat liver, probably as palmitates4. On the other hand, cholesterol esters are usually made up of poly-unsaturated fatty acids in the lymph and blood of rats5. For the absorption of the two lipid materials, the enzymes of the pancreas have been largely implicated, while not much attention has been paid to the possible role of the mucosal enzymes. From the behaviour of the mucosal enzymes, as presented here, it appears that probably these enzymes play a more important part in the re-esterification of the two lipid materials during their absorption.
Resumo:
Vitamin A, when extracted along with other lipids from sheep liver, had an E1cm.1% value of 14.4, which was raised to 45.57 on removal of the phospholipids by cold acetone. Selective hydrolysis of triglycerides by an extract of acetone-dried sheep pancreas in the presence of HgCl2 as inhibitor of vitamin A esterase, followed by chromatography through alumina gave a product with E1cm.1% value of 276. This on chromatography through magnesium oxide raised the E1cm.1, value to 601.5, representing 64% pure vitamin A ester calculated as palmitate, and the total recovery was 23% of the starting oil. The purified ester preparation, when subjected to reverse-phase chromatography on silicone-impregnated paper, gave a single ultraviolet fluorescent band. The fluorescent band on hydrolysis gave only one fatty acid. This was conclusively identified to be palmitic acid.
Resumo:
Starting from 6-methoxynaphthaldehyde-2, 2-carboxy-7-methoxy-1, 2, 3, 4-tetrahydrophenanthrone-4 was prepared. Sodium borohydride reduction of the keto-acid followed by chromic acid oxidation yielded the lactone of 2-carboxy-4-hydroxy-7-methoxy-1, 2, 3, 4-tetrahydrophenanthrone. Alkylation of the lactone of 2-carboxy-4-hydroxy-6-methoxytetralone was not promising.
Resumo:
Dimethyl 3-(aryl)-3,6-dihydro-2H-1,3-oxazine4,5-dicarboxylate structure assigned for the products obtained in the Bronsted acid catalyzed reaction of dimethyl but-2-ynoates with anilines and an excess of formaldehyde in methanol has been revised to methyl 1-(aryl)-3-(methoxymethyl)-4,5-dioxopyrrolidine-3-carboxylate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.
Resumo:
The kinetics of dimerization of 4-substituted- and unsubstituted o-benzoylbenzoyl chlorides, with iodide ion can be described by the expression, rate =k2[acid chloride][iodide]. The value for the reaction in dimethylformamide solution is –0·38. The entropy of activation for the reaction is –34·2 cal mol–1 K–1 and the activation energy is 10·7 kcal mol–1. These results have been interpreted as evidence for the formation of pseudo-iodide in the rate-determining step and its fast decomposition to radicals which combine to give a mixture of stereoisomeric dilactones.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.
Resumo:
Administration of 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) to mice resulted in a striking increase in the level of δ-aminolevulinic acid (ALA) synthetase in liver. Although the enzyme activity was primarily localized in mitochondria and postmicrosomal supernatant fluid, a significant level of activity was also detected in purified nuclei. The time course of induction showed a close parallelism between the bound and free enzyme activities with the former always accounting for a higher percentage of the total activity as compared to the latter. Studies with cycloheximide indicated a half-life of around 3 hr for both the bound and free ALA synthetase. Actinomycin D and hemin prevented enzyme induction when administered along with DDC, but when administered 12 hr after DDC treatment Actinomycin D did not lead to a decay of either the bound or free enzyme activity and hemin inhibited the bound enzyme activity but not the free enzyme level. The molecular sizes of the mitochondrial and cytosolic ALA synthetase(s) were found to be similar on sephadex columns.
Resumo:
Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.