974 resultados para 2-Bromo-1,4-naphthoquinone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the complex process of tumor cell spread which is responsible for the majority of cancer-related deaths. Metastasis necessitates complex phenotypic changes, many of which are mediated by changes in the activities of cell surface molecules. One of these is cell surface $\beta$1,4-galactosyltransferase (GalTase), which is elevated on more highly metastatic cells. In this study, both molecular and biochemical methods were used to perturb and manipulate cell surface GalTase levels on K1735 murine melanoma cell lines in order to examine its function in metastasis.^ As expected, highly metastatic K1735 variants have higher cell surface GalTase than poorly metastatic variants. Stably transfected K1735 cell lines that overexpress surface GalTase were created. These cell lines were assayed for metastatic ability using an invasion chamber with Matrigel-coated filter inserts. Cells with increased surface GalTase were uniformly more invasive than neo transfected controls. With multiple cell lines, there was a direct correlation (r = 0.918) between surface GalTase activity and invasiveness. Homologous recombination was used to create K1735 cells with decreased levels of surface GalTase. These cells were uniformly less invasive than controls. Cell surface GalTase was inhibited using two different biochemical strategies. In both cases, inhibition of surface GalTase led to a decrease in in vivo metastatic ability of K1735 cells. This is the first direct experimental evidence addressing GalTase function in metastasis. These data provide several lines of independent evidence which show that cell surface GalTase facilitates invasion and metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digitalisat der Ausg. Warša, 1913