1000 resultados para 1995_03231313 CTD-29 4501303


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a letter from Phoebe Palmer and her husband written on January 29, 1844 to Gershom Cox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoplasmic reticulum protein 29 (ERp29) is a novel endoplasmic reticulum ( ER) secretion factor that facilitates the transport of secretory proteins in the early secretory pathway. Recently, it was found to be overexpressed in several cancers; however, little is known regarding its function in breast cancer progression. In this study, we show that the expression of ERp29 was reduced with tumor progression in clinical specimens of breast cancer, and that overexpression of ERp29 resulted in G(0)/G(1) arrest and inhibited cell proliferation in MDA-MB-231 cells. Importantly, overexpression of ERp29 in MDA-MB-231 cells led to a phenotypic change and mesenchymal-epithelial transition (MET) characterized by cytoskeletal reorganization with loss of stress fibers, reduction of fibronectin (FN), reactivation of epithelial cell marker E-cadherin and loss of mesenchymal cell marker vimentin. Knockdown of ERp29 by shRNA in MCF-7 cells reduced E-cadherin, but increased vimentin expression. Furthermore, ERp29 overexpression in MDA-MB-231 and SKBr3 cells decreased cell migration/invasion and reduced cell transformation, whereas silencing of ERp29 in MCF-7 cells enhanced cell aggressive behavior. Significantly, expression of ERp29 in MDA-MB-231 cells suppressed tumor formation in nude mice by repressing the cell proliferative index (Ki-67 positivity). Transcriptional profiling analysis showed that ERp29 acts as a central regulator by upregulating a group of genes with tumor suppressive function, for example, E-cadherin (CDH1), cyclin-dependent kinase inhibitor (CDKN2B) and spleen tyrosine kinase (SYK), and by downregulating a group of genes that regulate cell proliferation (eg, FN, epidermal growth factor receptor ( EGFR) and plasminogen activator receptor ( uPAR)). It is noteworthy that ERp29 significantly attenuated the overall ERK cascade, whereas the ratio of p-ERK1 to p-ERK2 was highly increased. Taken together, our results showed that ERp29 is a novel regulator leading to cell growth arrest and cell transition from a proliferative to a quiescent state, and reprogramming molecular portraits to suppress the tumor growth of MDA-MB-231 breast cancer cells. Laboratory Investigation (2009) 89, 1229-1242; doi: 10.1038/labinvest.2009.87; published online 21 September 2009