990 resultados para 155-944C
Resumo:
This exploratory article examines the phenomenon of the ‘Quantified Self’—until recently, a subculture of enthusiasts who aim to discover knowledge about themselves and their bodies through self-tracking, usually using wearable devices to do so—and its implications for laws concerned with regulating and protecting health information. Quantified Self techniques and the ‘wearable devices’ and software that facilitate them—in which large transnational technology corporations are now involved—often involve the gathering of what would be considered ‘health information’ according to legal definitions, yet may occur outside the provision of traditional health services (including ‘e-health’) and the regulatory frameworks that govern them. This article explores the legal and regulatory framework for self-quantified health information and wearable devices in Australia and determines the extent to which this framework addresses privacy and other concerns that these techniques engender, along with suggestions for reform.
Resumo:
A membrane with interpenetrating networks between poly(vinyl alcohol) (PVA) and poly(styrene sulfonic acid) (PSSA) coupled with a high proton conductivity is realized and evaluated as a proton exchange membrane electrolyte for a direct methanol fuel cell (DMFC). Its reduced methanol permeability and improved performance in DMFCs suggest the new blend as an alternative membrane to Nafion membranes. The membrane has been characterized by powder X-ray diffraction, scanning electron microscopy, time-modulated differential scanning calorimetry, and thermogravimetric analysis in conjunction with its mechanical strength. The maximum proton conductivity of 3.3×10−2 S/cm for the PVA–PSSA blend membrane is observed at 373 K. From nuclear magnetic resonance imaging and volume localized spectroscopy experiments, the PVA–PSSA membrane has been found to exhibit a promising methanol impermeability, in DMFCs. On evaluating its utility in a DMFC, it has been found that a peak power density of 90 mW/cm2 at a load current density of 320 mA/cm2 is achieved with the PVA–PSSA membrane compared to a peak power density of 75 mW/cm2 at a load current density of 250 mA/cm2 achievable for a DMFC employing Nafion membrane electrolyte while operating under identical conditions; this is attributed primarily to the methanol crossover mitigating property of the PVA–PSSA membrane.
Resumo:
Nanostructured MnO2 was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer-Emmett-Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared MnO2 was amorphous and contained particles of 5-10 nm diameter. Upon annealing at temperatures >400°C, the amorphous MnO2 attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs SCE in 0.1 M sodium sulfate solution. Specific capacitance of about 250 F g-1 was obtained at a current density of 0.5 mA cm-2(0.8 A g-1).
Resumo:
ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus.
Resumo:
This paper reports on findings from the Interests and Recruitment in Science study, which explored the experiences of first year students studying science, technology, engineering and mathematics (STEM) courses in Australian universities. First year STEM students who went to school in rural or regional areas were as engaged, aspirational and motivated as their more metropolitan counterparts. However, they were less likely to have studied physics or advance mathematics, and more likely to have enrolled in an Agricultural or Environmental Science degree. The relationships between these results and broader contextual issues such as employment and Higher Education budgetary and policy settings are discussed.
Resumo:
The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.
Resumo:
The conformational characteristics of disulfide bridges in proteins have been analyzed using a dataset of 22 protein structures, available at a resolution of 2.0 Å, containing a total of 72 disulfide crosslinks. The parameters used in the analysis include (φ, Ψ) values at Cys residues, bridge dihedral angles χss, χ1i, χ1j, χ2i and χ2j the distances Cαi-Cαj and Cβi-Cβj between the Cα and Cβ atoms of Cys(i) and Cys(j). Eight families of bridge conformations with three or more occurrences have been identified on the basis of these stereochemical parameters. The most populated family corresponds to the "left handed spiral" identified earlier by Richardson ((1981) Adv. Protein Chem. 34, 167–330). Disulfide bridging across antiparallel extended strands is observed in α-lytic protease, crambin, and β-trypsin and this structure is shown to be very similar to those obtained in small cystine peptides. Solvent accessible surface area calculations show that the overwhelming majority of disulfide bridges are inaccessible to solvent.
Resumo:
Thymidylate synthase (TS), a dimeric enzyme, forms large soluble aggregates at concentrations of urea (3.3-5 M), well below that required for complete denaturation, as established by fluorescence and size-exclusion chromatography. In contrast to the wild-type enzyme, an engineered mutant of TS (T155C/E188C/C244T), TSMox, in which two subunits are crosslinked by disulfide bridges between residues 155-188' and 188-155', does not show this behavior. Aggregation behavior is restored upon disulfide bond reduction in the mutant protein, indicating the involvement of interface segments in forming soluble associated species. Intermolecular disulfide crosslinking has been used as a probe to investigate the formation of larger non-native aggregates. The studies argue for the formation of large multimeric species via a sticky patch of polypeptide from the dimer interface region that becomes exposed on partial unfolding. Covalent reinforcement of relatively fragile protein-protein interfaces may be a useful strategy in minimizing aggregation of non-native structures in multimeric proteins.
Resumo:
The x-ray crystal structure of the tetrameric T-antigen-binding lectin from peanut, M(r) 110,000, has been determined by using the multiple isomorphous replacement method and refined to an R value of 0.218 for 22,155 reflections within the 10- to 2.95-A resolution range. Each subunit has essentially the same characteristic tertiary fold that is found in other legume lectins. The structure, however, exhibits an unusual quaternary arrangement of subunits. Unlike other well-characterized tetrameric proteins with identical subunits, peanut lectin has neither 222 (D2) nor fourfold (C4) symmetry. A noncrystallographic twofold axis relates two halves of the molecule. The two monomers in each half are related by a local twofold axis. The mutual disposition of the axes is such that they do not lead to a closed point group. Furthermore, the structure of peanut lectin demonstrates that differences in subunit arrangement in legume lectins could be due to factors intrinsic to the protein molecule and, contrary to earlier suggestions, are not necessarily caused by interactions involving covalently linked sugar. The structure provides a useful framework for exploring the structural basis and the functional implications of the variability in the subunit arrangement in legume lectins despite all of them having nearly the same subunit structure, and also for investigating the general problem of "open" quaternary assembly in oligomeric proteins.
Resumo:
Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.
Resumo:
The recombination properties of cobalt centers in p-type germanium containing cobalt in the concentration range 1014 to 1016 atoms/cm3 have been investigated. The measurement of lifetime has been carried out by steady-state photoconductivity and photo-magneto-electric methods in the temperature range 145 to 300°K. The cross-sections Sno (electron capture cross-section at neutral centers). Sn- (electron capture cross-section at singly negatively charged centers) and their temperature variations have been estimated by the analysis of the lifetime data on the basis of Sah-Shockley's multi-level formula. The value of Sno is (15±5).10-16 cm2 and is temperature independent. The value of Sn- is ≈4·10-16 cm2 around 225°K and it increases with increase of temperature. The possible mechanisms for capture at neutral and repulsive centers are discussed and a summary of the capture cross-sections for cobalt centers is given. A comparison of the cross-section values of cobalt and their temperature variations with those of the related impurities-manganese, iron and nickel-in germanium has been made.
Resumo:
An extracellular endopolygalacturonate lyase of Cytophaga johnsonii was purified from the culture filtrate. It appeared to be homogeneous as judged by polyacrylamide gel electrophoresis at pH 8.6 as well as pH 4.3. The purified enzyme had a pH optimum around 9.0 and required Ca++ ions for its maximum activity. The apparent Kmfor polygalacturonic acid was found to be 0.22%. Both paper and column chromatography indicated formation and accumulation of an unsaturated monomer along with unsaturated di-, tri-, tetra- and pentamers from polygalacturonic acid by the enzyme action, indicating that the enzyme cleaved the substrate randomly in a non-hydrolytic manner. The glycosidic linkage next to the non-reducing end of polygalacturonic acid was not resistant to attack by this enzyme unlike in other known polygalacturonate lyases.