983 resultados para 138-853
Resumo:
Issue addressed: Measures of 'social identity' and 'psychological sense of community' were included within a broader formative research inquiry to gain insight into the identity characteristics and level of connectedness among older recreational road travellers (commonly known as Grey Nomads). The research sought to gain insights on how best to reach or speak to this growing driver cohort. ----- ----- Method: Participants included 631 older recreational road travellers ranging in age from 50 years to over 80 years. Data were obtained through three scales which were incorporated into a larger formative research survey; an identity hierarchy, the Three Factor Model of Social Identity and the Sense of Community Index. ----- ----- Results: Older recreational road travellers see themselves principally as couples, with social group identity being secondary. Although many identified to some degree with the Grey Nomad identity, when asked to self categorise as either members of the Broad Network of Recreational Vehicle Travellers or as Grey Nomads, the majority categorised themselves as the former. Those identifying as Grey Nomads, however, reported significantly higher levels of 'social identification' and 'sense of community'. ----- ----- Conclusion: The Grey Nomad identity may not be the best identity at which to target road safety messages for this cohort. Targeting travelling 'couples' may be more efficacious. Using the 'Grey Nomad' identity is likely to reap at least some success, however, given that many identified to some degree with this group identity. Those identifying as Grey Nomads may be more open to community participation or behaviour change given their significantly higher levels of 'social identity' and 'sense of community'.
Resumo:
Longitudinal panel studies of large, random samples of business start-ups captured at the pre-operational stage allow researchers to address core issues for entrepreneurship research, namely, the processes of creation of new business ventures as well as their antecedents and outcomes. Here, we perform a methods-orientated review of all 83 journal articles that have used this type of data set, our purpose being to assist users of current data sets as well as designers of new projects in making the best use of this innovative research approach. Our review reveals a number of methods issues that are largely particular to this type of research. We conclude that amidst exemplary contributions, much of the reviewed research has not adequately managed these methods challenges, nor has it made use of the full potential of this new research approach. Specifically, we identify and suggest remedies for context-specific and interrelated methods challenges relating to sample definition, choice of level of analysis, operationalization and conceptualization, use of longitudinal data and dealing with various types of problematic heterogeneity. In addition, we note that future research can make further strides towards full utilization of the advantages of the research approach through better matching (from either direction) between theories and the phenomena captured in the data, and by addressing some under-explored research questions for which the approach may be particularly fruitful.
Resumo:
The effective removal of pollutants using a thermally and chemically stable substrate that has controllable absorption properties is a goal of water treatment. In this study, the surfaces of thin alumina (γ-Al2O3) nanofibres were modified by the grafting either of two organosilane agents, 3-chloro-propyl-triethoxysilane (CPTES) and octyl-triethoxysilane (OTES). These modified materials were then trialed as absorbents for the removal of two herbicides, alachlor and imazaquin from water. The formation of organic groups during the functionalisation process established super hydrophobic sites on the surfaces of the nanofibres. This super hydrophobic group is a kind of protruding adsorption site which facilitates the intimate contact with the pollutants. OTES grafted substrate were shown to be more selective for alachlor while imazaquin selectivity is shown by the CPTES grafted substrate. Kinetics studies revealed that imazaquin was rapidly adsorbed on CPTES-modified surfaces. However, the adsorption of alachlor by OTES grafted surface was achieved more slowly.
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
The impact of urban development and climate change has created the impetus to monitor changes in the environment, particularly, the behaviour, habitat and movement of fauna species. The aim of this chapter is to present the design and development of a sensor network based on smart phones to automatically collect and analyse acoustic and visual data for environmental monitoring purposes. Due to the communication and sophisticated programming facilities offered by smart phones, software tools can be developed to allow data to be collected, partially processed and sent to a remote server over the network for storage and further processing. This sensor network which employs a client-server architecture has been deployed in three applications: monitoring a rare bird species near Brisbane Airport, study of koalas behaviour at St Bees Island, and detection of fruit flies. The users of this system include scientists (e.g. ecologists, ornithologists, computer scientists) and community groups participating in data collection or reporting on the environment (e.g. students, bird watchers). The chapter focuses on the following aspects of our research: issues involved in using smart phones as sensors; the overall framework for data acquisition, data quality control, data management and analysis; current and future applications of the smart phone-based sensor network, and our future research directions.
Resumo:
Background: Specialised disease management programmes for chronic heart failure (CHF) improve survival, quality of life and reduce healthcare utilisation. The overall efficacy of structured telephone support or telemonitoring as an individual component of a CHF disease management strategy remains inconclusive. Objectives: To review randomised controlled trials (RCTs) of structured telephone support or telemonitoring compared to standard practice for patients with CHF in order to quantify the effects of these interventions over and above usual care for these patients. Search strategy: Databases (the Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment Database (HTA) on The Cochrane Library, MEDLINE, EMBASE, CINAHL, AMED and Science Citation Index Expanded and Conference Citation Index on ISI Web of Knowledge) and various search engines were searched from 2006 to November 2008 to update a previously published non-Cochrane review. Bibliographies of relevant studies and systematic reviews and abstract conference proceedings were handsearched. No language limits were applied. Selection criteria: Only peer reviewed, published RCTs comparing structured telephone support or telemonitoring to usual care of CHF patients were included. Unpublished abstract data was included in sensitivity analyses. The intervention or usual care could not include a home visit or more than the usual (four to six weeks) clinic follow-up. Data collection and analysis: Data were presented as risk ratio (RR) with 95% confidence intervals (CI). Primary outcomes included all-cause mortality, all-cause and CHF-related hospitalisations which were meta-analysed using fixed effects models. Other outcomes included length of stay, quality of life, acceptability and cost and these were described and tabulated. Main results: Twenty-five studies and five published abstracts were included. Of the 25 full peer-reviewed studies meta-analysed, 16 evaluated structured telephone support (5613 participants), 11 evaluated telemonitoring (2710 participants), and two tested both interventions (included in counts). Telemonitoring reduced all-cause mortality (RR 0.66, 95% CI 0.54 to 0.81, P < 0.0001) with structured telephone support demonstrating a non-significant positive effect (RR 0.88, 95% CI 0.76 to 1.01, P = 0.08). Both structured telephone support (RR 0.77, 95% CI 0.68 to 0.87, P < 0.0001) and telemonitoring (RR 0.79, 95% CI 0.67 to 0.94, P = 0.008) reduced CHF-related hospitalisations. For both interventions, several studies improved quality of life, reduced healthcare costs and were acceptable to patients. Improvements in prescribing, patient knowledge and self-care, and New York Heart Association (NYHA) functional class were observed. Authors' conclusions: Structured telephone support and telemonitoring are effective in reducing the risk of all-cause mortality and CHF-related hospitalisations in patients with CHF; they improve quality of life, reduce costs, and evidence-based prescribing.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.