941 resultados para 1181 Ecology, evolutionary biology
Resumo:
Background The mechanistic basis of speciation and in particular the contribution of behaviour to the completion of the speciation process is often contentious. Contact zones between related taxa provide a situation where selection against hybridization might reinforce separation by behavioural mechanisms, which could ultimately fully isolate the taxa. One of the most abundant European mammals, the common vole Microtus arvalis, forms multiple natural hybrid zones where rapidly diverging evolutionary lineages meet in secondary contact. Very narrow zones of hybridization spanning only a few kilometres and sex-specific gene flow patterns indicate reduced fitness of natural hybrids and incipient speciation between some of the evolutionary lineages. In this study, we examined the contribution of behavioural mechanisms to the speciation process in these rodents by fine-mapping allopatric and parapatric populations in the hybrid zone between the Western and Central lineages and experimental testing of the partner preferences of wild, pure-bred and hybrid female common voles. Results Genetic analysis based on microsatellite markers revealed the presence of multiple parapatric and largely non-admixed populations at distances of about 10 km at the edge of the area of natural hybridization between the Western and Central lineages. Wild females from Western parapatric populations and lab-born F1 hybrids preferred males from the Western lineage whereas wild females of Central parapatric origin showed no measurable preference. Furthermore, wild and lab-born females from allopatric populations of the Western or Central lineages showed no detectable preference for males from either lineage. Conclusions The detected partner preferences are consistent with asymmetrical reinforcement of pre-mating reproductive isolation mechanisms in the European common vole and with earlier results suggesting that hybridization is more detrimental to the Western lineage. As a consequence, these differences in behaviour might contribute to a further geographical stabilization of this moving hybrid zone. Such behavioural processes could also provide a mechanistic perspective for frequently-detected asymmetrical introgression patterns in the largely allopatrically diversifying Microtus genus and other rapidly speciating rodents.
Resumo:
The Carrabassett Valley Sanitary District in Carrabassett Valley, Maine has utilized both a forest spray irrigation system and a Snowfluent™ system for the treatment of their wastewater effluent. This study was designed to evaluate potential changes in soil properties after approximately 20 years of treatment in the forested spray irrigation site and three years of treatment in the field Snowfluent™ site. In addition, grass yield and composition were evaluated on the field study sites. After treatment with effluent or Snowfluent™, soils showed an increase in soil exchangeable Ca, Mg, Na, and K, base saturation, and pH. While most constituents were higher in treated soils, available P was lower in treated soils compared to the controls. This difference was attributed to higher rates of P mineralization from soil organic matter due to an irrigation effect of the treatment, depleting available P pools despite the P addition with the treatment. Most of the differences due to treatment were greatest at the surface and diminished with depth. Depth patterns in soil properties mostly reflected the decreasing influence of organic matter and its decomposition products with depth as evidenced by significantly higher total C in the surface compared to lower horizons. There were decreasing concentrations of total N, and exchangeable or extractable Ca, Mg, Na, K, Mn, Zn, and P with depth. In addition, there was decreasing BS with depth, driven primarily by declining exchangeable Ca and Mg. Imgation with Snowfluent™ altered the chemical composition of the grass on the site. All element concentrations were significantly higher in the grass foliage except for Ca. The differences were attributed to the additional nutrients and moisture derived from the Snowfluent™. The use of forest spray imgation and Snowfluent™ as a wastewater treatment strategy appears to work well. The soil and vegetation were able to retain most of the applied nutrients, and do not appear to be moving toward saturation. Vegetation management may be a key tool for managing nutrient accumulation on the grass sites as the system ages.
Resumo:
Background: Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Results: Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. Conclusions: This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Resumo:
Sudamérica es una de las zonas con mayor cantidad de bosque seco tropical a nivel mundial. No obstante, estos bosques han sido poco conocidos y la mayoría de estudios han estado orientados hacia los bosques húmedos tropicales. Los bosques secos se han reducido drásticamente y siguen muy amenazados, corriendo el riesgo de desaparecer en los próximos años. Por ello, es fundamental, generar investigación aplicada para la conservación inmediata de los ecosistemas secos tropicales. En Ecuador, la situación no es diferente y las zonas secas catalogadas como biodiversas están en constante amenaza. Los pocos estudios realizados en Ecuador sobre zonas secas, han permitido mejorar nuestro conocimiento referente a la diversidad y abundancia de las especies, relaciones planta-planta y síndromes de dispersión. No existen estudios sobre caracteres morfológicos en frutos y semillas de las especies leñosas de bosque seco. Sin embargo, nuestra comprensión de la dinámica y estructura de las comunidades ecológicas de zonas secas poco estudiadas, puede mejorar rápidamente mediante el estudio y enfoque de rasgos morfofisiológicos funcionales. El objetivo general del presente estudio fue aportar al conocimiento de la ecología y biología de semillas de zonas secas tropicales mediante el análisis y evaluación de rasgos morfofisiológicos de frutos y semillas de una comunidad de especies leñosas. El estudio se realizó en una zona de bosque y matorral seco, ubicados al sur occidente del Ecuador, a una altitud comprendida entre los 250 a 1 200 m s.n.m. caracterizada por una marcada estacionalidad ambiental, con lluvias desde diciembre a abril y una estación seca de mayo a noviembre. Precipitación media anual de 500 mm con una temperatura media anual de 20° a 26 °C. La zona de estudio forma parte de la región Tumbesina compartida entre el sur del Ecuador y el norte del Perú con gran diversidad de especies vegetales endémicas. Para el estudio se colectaron frutos con semillas maduras previamente a su dispersión de entre ocho y diez individuos de 80 especies entre árboles y arbustos más representativos de los bosques secos ecuatorianos. De los frutos colectados se utilizó una muestra al azar de 50 frutos y semillas por especie para los diferentes análisis. Se midió y evaluó 18 rasgos morfológicos y fisiológicos cuantitativos y cualitativos de frutos, semillas y de la especie. Se realizaron diferentes análisis de asociación y correlación entre los rasgos evaluados, con cinco variables ambientales registradas de las 109 parcelas establecidas en el área de estudio, además analizamos el tipo de dormición y comparamos la respuesta germinativa a la deshidratación relacionada con dos comunidades secas, matorral y bosque seco. Los resultados mostraron que las especies presentan gran heterogeneidad en rasgos continuos de las semillas. La variabilidad fue más evidente en rasgos como tamaño, volumen, masa y número de semillas por fruto. Sin embargo, una alta proporción de las especies tiende a producir una semilla por fruto. Además, la mayoría de las especies de bosque seco se caracterizan por no poseer algún tipo de apéndices o areola en sus semillas, forma ovalada y sin endospermo. La reserva nutritiva de las semillas se encuentra especialmente en los cotiledones de los embriones. Se encontraron seis tipos diferentes de embriones y la mayoría de las especies presentó embriones gruesos e invertidos. La dispersión de semillas está dominada por zoocoria en un 38 %, con relación a anemocoria (22 %) y autocoria (19 %). Sin embargo, encontramos que el 70 % de las especies posee frutos secos. Los análisis de dormición en las semillas de bosque seco, mostraron que el 60 % de las especies de bosque seco presentaron semillas con algún tipo de latencia, menor a la encontrada en especies de bosque deciduo tropical y sabanas, sin embargo, la dormición de las especies de bosque seco fue mayor al porcentaje de especies con dormición de bosque semiperenne y selva lluviosa tropical. La dormición física constituyó el 35 % de las especies de bosque seco, seguido del 12 % con dormición fisiológica, mientras que solamente una especie tuvo dormición morfológica. Encontramos que la dormición de las semillas de las especies en estudio se relaciona significativamente con el tipo y función del embrión y con el endospermo. Existieron relaciones significativas entre los rasgos morfológicos de los frutos, semillas, embriones y atributos de los individuos de 46 especies, aunque en algunos casos con coeficientes de correlación bajos. Hubo pocas relaciones entre los rasgo morfológicos de las semillas con las variables ambientales registradas. Solamente el tipo de testa y la presencia de apéndices en las semillas mostraron relación con el pH y la temperatura media del suelo. No obstante usando el modelo fouth corner-RLQ, no se encontraron asociaciones claras ni significativas entre rasgos morfológicos de semillas y frutos con variables ambientales. Al medir el efecto de la deshidratación en las semillas de los dos hábitats secos tropicales: bosque y matorral seco, los resultados determinaron que tanto las semillas de las especies leñosas de ambientes más áridos (matorral seco) están en gran medida pre-adaptadas a la desecación que las especies de ambientes menos áridos (bosque seco). Los tratamientos de deshidratación ejercieron un efecto negativo en los porcentajes de germinación en todas las especies, excepto para C. platanifolia. Los resultados más sorprendentes se registraron para Senna alata que mostró germinación extremadamente baja o incluso sin germinación a contenidos de humedad de la semillas de 0,10 g H2O g de peso seco. Las curvas de germinación difirieron significativamente entre los tratamientos de deshidratación en cada especie. Aportar al conocimiento la fisiología de la deshidratación y los límites de tolerancia de las semillas de bosque y matorral seco ayudará a entender mejor el papel de este rasgo en la ecología de las semillas y dinámica de las comunidades áridas tropicales. El estudio demostró, que la adaptación ecológica de las semillas de las especies leñosas de bosque seco a factores ambientales extremos, puede verse reflejada en una red de interacciones y correlaciones complejas entre los propios rasgos morfológicos y fisiológicos continuos y cuantitativos, sobre todo en rasgos internos de las semillas, quienes ejercerían una mayor influencia en toda la red de interacciones. Si bien, los rasgos de las semillas no mostraron fuertes relaciones con las variables ambientales, posiblemente las asociaciones presentes entre rasgos morfológicos pudiesen predecir en cambio interacciones entre especies y comportamientos y procesos relacionados con la tolerancia a la deshidratación y dormición de las semillas. ABSTRACT South America is one of the areas with the largest number of tropical dry forest in the world. However, these forests have been poorly understood and most studies have been directed to tropical rainforests. Dry forests have been drastically reduced and are very threatened, risking desaparecerer in the next years. It is therefore essential, generate applied research for conservation of tropical dry ecosystems. In Ecuador the situation is no different and dry areas classified as biodiverse are under constant threat. The few studies made in Ecuador on drylands have improved our knowledge concerning the diversity and abundance of species, plant-plant relationships and dispersion syndromes. Morphological studies on fruits and seeds of woody dry forest species do not exist. However, our understanding of the dynamics and structure of ecological communities dryland little studied, may improve quickly through the study and functional approach morphophysiological traits. The overall objective of this study was to contribute to the knowledge of the ecology and biology of tropical dry seeds through analysis and evaluation of morphophysiological traits of fruits and seeds of a community of woody species. The study was conducted in an area of dry scrub forest, located at the southwest of Ecuador, at an altitude between 250 to 1200 m asl. Environmental characterized by a marked seasonality, with rainfall from December to April and a dry season from May to November. Annual rainfall of 500 mm with an average annual temperature of 20° to 26 °C. The study area is part of the shared Tumbesina region between southern Ecuador and northern Peru with a great diversity of endemic plant species. For the study, we collected fruit and seed madure of eight and ten individuos of 80 species of trees and shrub most representated of the Ecuador dry forest. We selected a sample of 50 fruits and seeds for different analysis. We measure and evaluate 18 morphological and physiological traits of fruits, seeds and species. We perform analysis and correlation between traits associated with five environmental variables taken from the 109 plots established in the study area also analyze and compare the germination response to dehydration related to two dry communities, scrub and dry forest. The results showed that the species have great heterogeneity in continuous seed traits. Variability was more evident in features such as size, volume, mass, and number of seeds per fruit. However, a high proportion of species tends to produce a seed per fruit. In addition, most of the species of dry forest is characterized by not having some sort of ppendices or areola in its seeds, oval form and without endosperm. The nutrient reserves of seeds are especially in the cotyledons of the embryos. Six different embryos were found and most of the species presented thick and inverted embryos. Seed dispersal zoochory is dominated by 38 %, relative to anemochory (22 %) and autochory (19 %). However, we found that 70 % of the species has dried fruits. The analysis of dormancy from tropical dry forest, showed that 60 % of species showed seed dormancy, down from species found in tropical deciduous forest and savanna, however dormancy dry forest species was higher than the percentage of forest species dormancy semi-evergreen and tropical rain forest. Physical dormancy corresponds to 35 % of species, followed by 12 % with physiological dormancy, while only one species had morphological dormancy. We found that dormancy of the seeds was significantly related to the type and function of the embryo and the endospemo. There were significant relationships between morphological traits of fruits, seeds, embryos and attributes of individuals of 46 species, although in some cases with low correlation coefficients. There was little relationship between the morphologic traits of the seeds with the registered environmental variables. Only the type of tesla and the presence of appendages on the seeds showed relation to pH and the mean soil temperature. However, using the fourth corner-RLQ model, neither clear nor significant between morphological traits of seeds and fruits associations with environmental variables were found. The effect of dehydration on seeds of two tropical dry forest habitats was evident in dry scrub. The results determined that both the seeds of woody species forest and dry scrub are pre-adapted to drier conditions. Dehydration treatments exerted a negative effect on germination percentage in all species, except for C. platanifolia. However, all species germinated in treatments of extreme dryness, but in low percentages. The most striking results were recorded for Senna alata showed no germination when its moisture content was 0.10 g H2O g dry weight. Germination curves differ significantly between the treatments of dehydration in each species. Contribute to the knowledge of physiology and dehydration tolerance limits seeds dry scrub forest and help you better understand the role of this trait in seed ecology and dynamics of tropical arid communities. The study showed that the ecological adaptation of seeds of woody species of dry forest to extreme environmental factors may be reflected in a complex web of interactions and correlations between morphological and physiological traits continuous and quantitative themselves, especially in internal seed traits, who exerted a major influence on the entire network of interactions. While the seed traits showed strong relationships with environmental variables possibly present associations between morphological traits could predict interactions between species and change behaviors related to desiccation tolerance and seed dormancy processes.
Resumo:
Anopheles arabiensis, one of the two most potent malaria vectors of the gambiae complex, is characterized by the presence of chromosomal paracentric inversions. Elucidation of the nature and the dynamics of these inversions is of paramount importance for the understanding of the population genetics and evolutionary biology of this mosquito and of the impact on malaria epidemiology. We report here the cloning of the breakpoints of the naturally occurring polymorphic inversion 2Rd′ of A. arabiensis. A cDNA clone that cytologically mapped on the proximal breakpoint was the starting material for the isolation of a cosmid clone that spanned the breakpoint. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a repetitive element that exhibits distinct distribution in different A. arabiensis strains. Sequencing analysis of that area revealed elements characteristic of transposable element terminal repeats. We called this presumed transposable element Odysseus. The presence of Odysseus at the junction of the naturally occuring inversion 2Rd′ suggests that the inversion may be the result of the transposable element’s activity. Characteristics of Odysseus’ terminal region as well as its cytological distribution in different strains may indicate a relatively recent activity of Odysseus.
Resumo:
Funding This work was supported by grants from the French Ministry of Research (PhD fellowship to CR), the University of Aberdeen (stipend to CR), the CNRS (PICS grant to BD), the L’Oréal Foundation-UNESCO “For Women in Science” program (fellowship to CR), the Région Rhône-Alpes (student mobility grant CMIRA Explora’doc to CR), the Rectors’ Conference of the Swiss Universities (mobility grant to CR), the Fédération de Recherche 41 BioEnvironnement et Santé (training grant to CR), and the Journal of Experimental Biology (travel grant to CR).
Resumo:
In 1979, Lewontin and I borrowed the architectural term “spandrel” (using the pendentives of San Marco in Venice as an example) to designate the class of forms and spaces that arise as necessary byproducts of another decision in design, and not as adaptations for direct utility in themselves. This proposal has generated a large literature featuring two critiques: (i) the terminological claim that the spandrels of San Marco are not true spandrels at all and (ii) the conceptual claim that they are adaptations and not byproducts. The features of the San Marco pendentives that we explicitly defined as spandrel-properties—their necessary number (four) and shape (roughly triangular)—are inevitable architectural byproducts, whatever the structural attributes of the pendentives themselves. The term spandrel may be extended from its particular architectural use for two-dimensional byproducts to the generality of “spaces left over,” a definition that properly includes the San Marco pendentives. Evolutionary biology needs such an explicit term for features arising as byproducts, rather than adaptations, whatever their subsequent exaptive utility. The concept of biological spandrels—including the examples here given of masculinized genitalia in female hyenas, exaptive use of an umbilicus as a brooding chamber by snails, the shoulder hump of the giant Irish deer, and several key features of human mentality—anchors the critique of overreliance upon adaptive scenarios in evolutionary explanation. Causes of historical origin must always be separated from current utilities; their conflation has seriously hampered the evolutionary analysis of form in the history of life.
Resumo:
A central issue in evolutionary biology is the extent to which complex social organization is under genetic control. We have found that a single genomic element marked by the protein-encoding gene Gp-9 is responsible for the existence of two distinct forms of social organization in the fire ant Solenopsis invicta. This genetic factor influences the reproductive phenotypes and behavioral strategies of queens and determines whether workers tolerate a single fertile queen or multiple queens per colony. Furthermore, this factor affects worker tolerance of queens with alternate genotypes, thus explaining the dramatic differences in Gp-9 allele frequencies observed between the two social forms in the wild. These findings reveal how a single genetic factor can have major effects on complex social behavior and influence the nature of social organization.
Resumo:
In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K.Sirotkin (1999) Genome Res., 9, 677–679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.
Resumo:
Although panel discussants disagreed whether the biodiversity crisis constitutes a mass extinction event, all agreed that current extinction rates are 50–500 times background and are increasing and that the consequences for the future evolution of life are serious. In response to the on-going rapid decline of biomes and homogenization of biotas, the panelists predicted changes in species geographic ranges, genetic risks of extinction, genetic assimilation, natural selection, mutation rates, the shortening of food chains, the increase in nutrient-enriched niches permitting the ascendancy of microbes, and the differential survival of ecological generalists. Rates of evolutionary processes will change in different groups, and speciation in the larger vertebrates is essentially over. Action taken over the next few decades will determine how impoverished the biosphere will be in 1,000 years when many species will suffer reduced evolvability and require interventionist genetic and ecological management. Whether the biota will continue to provide the dependable ecological services humans take for granted is less clear. The discussants offered recommendations, including two of paramount importance (concerning human populations and education), seven identifying specific scientific activities to better equip us for stewardship of the processes of evolution, and one suggesting that such stewardship is now our responsibility. The ultimate test of evolutionary biology as a science is not whether it solves the riddles of the past but rather whether it enables us to manage the future of the biosphere. Our inability to make clearer predictions about the future of evolution has serious consequences for both biodiversity and humanity.
Resumo:
The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.
Resumo:
Directionality in populations of replicating organisms can be parametrized in terms of a statistical concept: evolutionary entropy. This parameter, a measure of the variability in the age of reproducing individuals in a population, is isometric with the macroscopic variable body size. Evolutionary trends in entropy due to mutation and natural selection fall into patterns modulated by ecological and demographic constraints, which are delineated as follows: (i) density-dependent conditions (a unidirectional increase in evolutionary entropy), and (ii) density-independent conditions, (a) slow exponential growth (an increase in entropy); (b) rapid exponential growth, low degree of iteroparity (a decrease in entropy); and (c) rapid exponential growth, high degree of iteroparity (random, nondirectional change in entropy). Directionality in aggregates of inanimate matter can be parametrized in terms of the statistical concept, thermodynamic entropy, a measure of disorder. Directional trends in entropy in aggregates of matter fall into patterns determined by the nature of the adiabatic constraints, which are characterized as follows: (i) irreversible processes (an increase in thermodynamic entropy) and (ii) reversible processes (a constant value for entropy). This article analyzes the relation between the concepts that underlie the directionality principles in evolutionary biology and physical systems. For models of cellular populations, an analytic relation is derived between generation time, the average length of the cell cycle, and temperature. This correspondence between generation time, an evolutionary parameter, and temperature, a thermodynamic variable, is exploited to show that the increase in evolutionary entropy that characterizes population processes under density-dependent conditions represents a nonequilibrium analogue of the second law of thermodynamics.
Resumo:
Early in the development of plant evolutionary biology, genetic drift, fluctuations in population size, and isolation were identified as critical processes that affect the course of evolution in plant species. Attempts to assess these processes in natural populations became possible only with the development of neutral genetic markers in the 1960s. More recently, the application of historically ordered neutral molecular variation (within the conceptual framework of coalescent theory) has allowed a reevaluation of these microevolutionary processes. Gene genealogies trace the evolutionary relationships among haplotypes (alleles) with populations. Processes such as selection, fluctuation in population size, and population substructuring affect the geographical and genealogical relationships among these alleles. Therefore, examination of these genealogical data can provide insights into the evolutionary history of a species. For example, studies of Arabidopsis thaliana have suggested that this species underwent rapid expansion, with populations showing little genetic differentiation. The new discipline of phylogeography examines the distribution of allele genealogies in an explicit geographical context. Phylogeographic studies of plants have documented the recolonization of European tree species from refugia subsequent to Pleistocene glaciation, and such studies have been instructive in understanding the origin and domestication of the crop cassava. Currently, several technical limitations hinder the widespread application of a genealogical approach to plant evolutionary studies. However, as these technical issues are solved, a genealogical approach holds great promise for understanding these previously elusive processes in plant evolution.
Resumo:
The genetic basis of sexual isolation that contributes to speciation is one of the unsolved questions in evolutionary biology. Drosophila ananassae and Drosophila pallidosa are closely related, and postmating isolation has not developed between them. However, females of both species discriminate their mating partners, and this discrimination contributes to strong sexual isolation between them. By using surgical treatments, we demonstrate that male courtship songs play a dominant role in female mate discrimination. The absence of the song of D. pallidosa dramatically increased interspecies mating with D. ananassae females but reduced intraspecies mating with D. pallidosa females. Furthermore, genetic analysis and chromosomal introgression by repeated backcrosses to D. pallidosa males identified possible loci that control female discrimination in each species. These loci were mapped on distinct positions near the Delta locus on the middle of the left arm of the second chromosome. Because the mate discrimination we studied is well developed and is the only known mechanism that prevents gene flow between them, these loci may have played crucial roles in the evolution of reproductive isolation, and therefore, in the speciation process between these two species.