972 resultados para 109-395
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
Of all tRNAs, initiator tRNA is unique in its ability to start protein synthesis by directly binding the ribosomal P-site. This ability is believed to derive from the almost universal presence of three consecutive G-C base (3G-C) pairs in the anticodon stem of initiator tRNA. Consistent with the hypothesis, a plasmid-borne initiator tRNA with one, two, or all 3G-C pairs mutated displays negligible initiation activity when tested in a WT Escherichia coli cell. Given this, the occurrence of unconventional initiator tRNAs lacking the 3G-C pairs, as in some species of Mycoplasma and Rhizobium, is puzzling. We resolve the puzzle by showing that the poor activity of unconventional initiator tRNAs in E. coli is because of competition from a large pool of the endogenous WT initiator tRNA (possessing the 3G-C pairs). We show that E. coli can be sustained on an initiator tRNA lacking the first and third G-C pairs; thereby reducing the 3G-C rule to a mere middle G-C requirement. Two general inferences following from our findings, that the activity of a mutant gene product may depend on its abundance in the cell relative to that of the WT, and that promiscuous initiation with elongator tRNAs has the potential to enhance phenotypic diversity without affecting genomic integrity, have been discussed.
Resumo:
We report a simple, reliable and one-step method of synthesizing ZnO porous structures at room temperature by anodization of zinc (Zn) sheet with water as an electrolyte and graphite as a counter electrode. We observed that the de-ionized (DI) water used in the experiment is slightly acidic (pH=5.8), which is due to the dissolution of carbon dioxide from the atmosphere forming carbonic acid. Porous ZnO is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) studies. The current-transient measurement is carried out using a Gamry Instruments Reference 3000 and the thickness of the deposited films is measured using a Dektak surface profilometer. The PL, Raman and X-ray photoelectron spectroscopy are used to confirm the presence of ZnO phase. We have demonstrated that the hybrid structures of ZnO and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) exhibit good rectifying characteristics. The evaluated barrier height and the ideality factor are 0.45 eV and 3.6, respectively.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
We construct equations for the growth kinetics of structural glass within mode-coupling theory, through a nonstationary variant of the three-density correlator defined by G. Biroli et al. Phys. Rev. Lett. 97, 195701 (2006)]. We solve a schematic form of the resulting equations to obtain the coarsening of the three-point correlator chi(3)(t, t(w)) as a function of waiting time tw. For a quench into the glass, we find that chi(3) attains a peak value similar to t(w)(0.5) at t - t(w) similar to t(w)(0.8), providing a theoretical basis for the numerical observations of Parisi J. Phys. Chem. B 103, 4128 (1999)] and Kob and Barrat Phys. Rev. Lett. 78, 4581 (1997)]. The aging is not ``simple'': the t(w) dependence cannot be attributed to an evolving effective temperature.
Resumo:
The stability of a long unsupported circular tunnel (opening) in a cohesive frictional soil has been assessed with the inclusion of pseudo-static horizontal earthquake body forces. The analysis has been performed under plane strain conditions by using upper bound finite element limit analysis in combination with a linear optimization procedure. The results have been presented in the form of a non-dimensional stability number (gamma H-max/c); where H = tunnel cover, c refers to soil cohesion and gamma(max) is the maximum unit weight of soil mass which the tunnel can support without collapse. The results have been obtained for various values of H/D (D = diameter of the tunnel), internal friction angle (phi) of soil, and the horizontal earthquake acceleration coefficient (alpha(h)). The computations reveal that the values of the stability numbers (i) decrease quite significantly with an increase in alpha(h), and (ii) become continuously higher for greater values of H/D and phi. As expected, the failure zones around the periphery of the tunnel becomes always asymmetrical with an inclusion of horizontal seismic body forces. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present measurements of the stress as a function of vertical position in a column of granular material sheared in a cylindrical Couette device. All three components of the stress tensor on the outer cylinder were measured as a function of distance from the free surface at shear rates low enough that the material was in the dense, slow flow regime. We find that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. We argue that the anomalous stress profile is due to an anisotropic fabric caused by the combined action of gravity and shear.
Resumo:
One of the most striking aspects of the 11-year sunspot cycle is that there have been times in the past when some cycles went missing, a most well-known example of this being the Maunder minimum during 1645-1715. Analyses of cosmogenic isotopes (C-14 and Be-10) indicated that there were about 27 grand minima in the last 11 000 yrs, implying that about 2.7% of the solar cycles had conditions appropriate for forcing the Sun into grand minima. We address the question of how grand minima are produced and specifically calculate the frequency of occurrence of grand minima from a theoretical dynamo model. We assume that fluctuations in the poloidal field generation mechanism and in the meridional circulation produce irregularities of sunspot cycles. Taking these fluctuations to be Gaussian and estimating the values of important parameters from the data of the last 28 solar cycles, we show from our flux transport dynamo model that about 1-4% of the sunspot cycles may have conditions suitable for inducing grand minima.
Resumo:
Colonies of the primitively eusocial wasp Ropalidia marginata consist of a single egg layer (queen) and a number of non-egg-laying workers. Although the queen is a docile individual, not at the top of the behavioral dominance hierarchy of the colony, she maintains complete reproductive monopoly. If the queen is lost or removed, one and only one of the workers potential queen (PQ)] becomes hyperaggressive and will become the next queen of the colony. The PQ is almost never challenged because she first becomes hyperaggressive and then gradually loses her aggression, develops her ovaries, and starts laying eggs. Although we are unable to identify the PQ when the queen is present, she appears to be a ``cryptic heir designate.'' Here, we show that there is not just one heir designate but a long reproductive queue and that PQs take over the role of egg-laying, successively, without overt conflict, as the queen or previous PQs are removed. The dominance rank of an individual is not a significant predictor of its position in the succession hierarchy. The age of an individual is a significant predictor, but it is not a perfect predictor because PQs often bypass older individuals to become successors. We suggest that such a predesignated reproductive queue that is implemented without overt conflict is adaptive in the tropics, where conspecific usurpers from outside the colony, which can take advantage of the anarchy prevailing in a queenless colony and invade it, are likely to be present throughout the year.
Resumo:
Congruent oxidation occurs when an alloy oxidizes at constant oxygen chemical potential and temperature to an oxide in which the ratio of metallic components is the same as in the alloy. In alloys that undergo congruent oxidation concentration gradients near the surface are minimized. In this work thermodynamic conditions for congruent oxidation of binary and ternary alloys are formulated using the regular solution model to describe thermodynamic mixing properties. The conditions under which congruent oxidation can occur are identified. Congruent oxidation of a binary alloy X-Y will occur only if difference in oxygen potential for the oxidation of the two pure metals is less than twice the difference in regular solution parameters for the oxide and alloy phases (Omega(O)-Omega(A)). In the case of ternary alloys, congruency requirements for both two-phase and three-phase equilibria are discussed. Since the conditions for congruent oxidation of ternary alloy X-Y-Z depends on many parameters, the effect of systematic variation of the binary sets of regular solution parameters on the congruent composition is explored by numerical solution of the governing equations.
Resumo:
In graphene, the valleys represent spinlike quantities and can act as a physical resource in valley-based electronics to produce novel quantum computation schemes. Here we demonstrate a direct route to tune and read the valley quantum states of disordered graphene by measuring the mesoscopic conductance fluctuations. We show that the conductance fluctuations in graphene at low temperatures are reduced by a factor of 4 when valley triplet states are gapped in the presence of short-range potential scatterers at high carrier densities. We also show that this implies a gate tunable universal symmetry class that outlines a fundamental feature arising from graphene's unique crystal structure.
Resumo:
Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.
Resumo:
The detection of sound signals in vertebrates involves a complex network of different mechano-sensory elements in the inner ear. An especially important element in this network is the hair bundle, an antenna-like array of stereocilia containing gated ion channels that operate under the control of one or more adaptation motors. Deflections of the hair bundle by sound vibrations or thermal fluctuations transiently open the ion channels, allowing the flow of ions through them, and producing an electrical signal in the process, eventually causing the sensation of hearing. Recent high frequency (0.1-10 kHz) measurements by Kozlov et al. Proc. Natl. Acad. Sci. U. S. A. 109, 2896 (2012)] of the power spectrum and the mean square displacement of the thermal fluctuations of the hair bundle suggest that in this regime the dynamics of the hair bundle are subdiffusive. This finding has been explained in terms of the simple Brownian motion of a filament connecting neighboring stereocilia (the tip link), which is modeled as a viscoelastic spring. In the present paper, the diffusive anomalies of the hair bundle are ascribed to tip link fluctuations that evolve by fractional Brownian motion, which originates in fractional Gaussian noise and is characterized by a power law memory. The predictions of this model for the power spectrum of the hair bundle and its mean square displacement are consistent with the experimental data and the known properties of the tip link. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4768902]