967 resultados para Électroencéphalographie (EEG)
Resumo:
Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. Electrical activity (cell firing, EEG) was monitored concurrently with microdialysis sampling of extracellular glutamate, glucose and lactate. Electrophysiological parameters (firing rate, serial correlation, field potential occurrences) were analyzed offline and compared to dialysate concentrations. In rats, these probes demonstrated an injury-induced suppression of neuronal firing (from a control level of 2.87 to 0.41 spikes/sec postinjury), which was associated with increases in extracellular glutamate and lactate, and decreases in glucose levels. When placed in human patients, the probes detected sparse and slowly firing cells (mean = 0.21 spike/sec), with most units (70%) exhibiting a lack of serial correlation in the spike train. In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.
Resumo:
In 1989/90 a follow-up was made possible on 72 of 78 patients who have been treated for the supposed or confirmed diagnosis of a Lennox-Gastaut-Syndrome at the university children hospital of Berne between 1964 and 1978. Nine patients were excluded of this study because the diagnosis was proved wrong retrospectively, leaving 63 cases. Of these, eleven patients (17.5%) have died. The remaining 52 (82.5%) were evaluated regarding their epilepsy, psychomotor development and social adaptation. The follow-up was good for 14.3%, intermediate for 23.8% and poor for 44.4%. Bad prognostic factors were found to be: first manifestation of epilepsy during the first year of life, occurrence of infantile spasms or hypsarrhythmia in the EEG and pathological neurological signs at the beginning of the disease. In the course of illness a change of seizure phenomenology was observed. The infantile spasms were seen only during the first three years of epilepsy. After the second year of disease psychomotor seizures became more and more frequent. Atypical absences, already seen at the beginning, were the most frequent form of seizure from the third year of epilepsy until the end of our observations. During the course of disease the frequency of generalized tonic and tonic-clonic seizures decreased little.
Resumo:
BACKGROUND AND PURPOSE: Nonconvulsive status epilepticus (NCSE) is associated with a mortality rate of up to 18%, therefore requiring prompt diagnosis and treatment. Our aim was to evaluate the diagnostic value of perfusion CT (PCT) in the differential diagnosis of NCSE versus postictal states in patients presenting with persistent altered mental states after a preceding epileptic seizure. We hypothesized that regional cortical hyperperfusion can be measured by PCT in patients with NCSE, whereas it is not present in postictal states. MATERIALS AND METHODS: Nineteen patients with persistent altered mental status after a preceding epileptic seizure underwent PCT and electroencephalography (EEG). Patients were stratified as presenting with NCSE (n = 9) or a postictal state (n = 10) on the basis of clinical history and EEG data. Quantitative and visual analysis of the perfusion maps was performed. RESULTS: Patients during NCSE had significantly increased regional cerebral blood flow (P > .0001), increased regional cerebral blood volume (P > .001), and decreased (P > .001) mean transit time compared with the postictal state. Regional cortical hyperperfusion was depicted in 7/9 of patients with NCSE by ad hoc analysis of parametric perfusion maps during emergency conditions but was not a feature of postictal states. The areas of hyperperfusion were concordant with transient clinical symptoms and EEG topography in all cases. CONCLUSIONS: Visual analysis of perfusion maps detected regional hyperperfusion in NCSE with a sensitivity of 78%. The broad availability and short processing time of PCT in an emergency situation is a benefit compared with EEG. Consequently, the use of PCT in epilepsy may accelerate the diagnosis of NCSE. PCT may qualify as a complementary diagnostic tool to EEG in patients with persistent altered mental state after a preceding seizure.
Resumo:
OBJECTIVE: The primary objective of this nationwide survey carried out in department of cardiac anesthesia in Germany was to identify current practice with regard to neuromonitoring und neuroprotection. METHODOLOGY: The data are based on a questionnaire sent out to all departments of cardiac anesthesia in Germany between October 2007 und January 2008. The anonymized questionnaire contained 26 questions about the practice of preoperative evaluation of cerebral vessels, intra-operative use of neuromonitoring, the nature und application of cerebral protective measures, perfusion management during cardiopulmonary bypass, postoperative evaluation of neurological status, and training in the field of cerebral monitoring. RESULTS: Of the 80 mailed questionnaires 55% were returned and 90% of department evaluated cerebral vessels preoperatively with duplex ultrasound. The methods used for intra-operative neuromonitoring are electroencephalography (EEG, 60%) for type A dissections (38.1%), for elective surgery on the thoracic and thoraco-abdominal aorta (34.1% and 31.6%, respectively) and in carotid surgery (43.2%) near infrared spectroscopy (40%), evoked potentials (30%) and transcranial Doppler sonography (17.5%), with some centers using combined methods. In most departments the central nervous system is not subjected to monitoring during bypass surgery, heart valve surgery, or minimally invasive surgery. Cerebral protective measures used comprise patient cooling on cardio-pulmonary bypass (CPB 100%), extracorporeal cooling of the head (65%) and the administration of corticosteroids (58%), barbiturates (50%) and antiepileptic drugs (10%). Neuroprotective anesthesia consists of administering inhalation anesthetics (32.5%; sevoflurane 76.5%) and intravenous anesthesia (20%; propofol and barbiturates each accounting for 46.2%). Of the departments 72.5% cool patients as a standard procedure for surgery involving cardiovascular arrest and 37.5% during all surgery using CPB. In 84.6% of department CPB flow equals calculated cardiac output (CO) under normothermia, while the desired mean arterial pressure (MAP) varies between 60 and 70 mmHg (43.9%) and between 50 and 60 mmHg (41.5%), respectively. At body temperatures less than 18 degrees C CPB flow is reduced below the calculated CO (70%) while 27% of departments use normothermic flow rates. The preferred MAP under hypothermia is between 50 and 60 mmHg (59%). The results of intra-operative neuromonitoring are documented on the anesthesia record (77%). In 42.5% of the departments postoperative neurological function is estimated by the anesthesiologist. Continuing education sessions pertaining to neuromonitoring are organized on a regular basis in 32.5% of the departments and in 37.5% individual physicians are responsible for their own neuromonitoring education. CONCLUSION: The present survey data indicate that neuromonitoring and neuroprotective therapy during CPB is not standardized in cardiac anesthesiology departments in Germany. The systemic use of available methods to implement multimodal neuromonitoring would be desirable.
Resumo:
Hypoxic-ischaemic encephalopathy (HIE) is of major importance in neonatal and paediatric intensive care with regard to mortality and long-term morbidity. Our aim was to analyse our data in full-term neonates and children with special regard to withdrawal of life support and bad outcome. PATIENTS: All patients with HIE admitted to our unit from 1992-96 were analysed. Criteria for HIE were presence of a hypoxic insult followed by coma or altered consciousness with or without convulsions. Severity of HIE was assessed in neonates using Sarnat stages, and in children the duration of coma. In the majority of cases staging was completed with electrophysiological studies. Outcome was described using the Glasgow Outcome Scale. Bad outcome was defined as death, permanent vegetative state or severe disability, good outcome as moderate disability or good recovery. RESULTS: In the neonatal group (n = 38) outcome was significantly associated with Sarnat stages, presence of convulsions, severely abnormal EEG, cardiovascular failure, and multiple organ dysfunction (MOD). A bad outcome was observed in 27 cases with 14 deaths and 13 survivors. Supportive treatment was withdrawn in 14 cases with 9 subsequent deaths. In the older age group (n = 45) outcome was related to persistent coma of 24-48 h, severely abnormal EEG, cardiovascular failure, liver dysfunction and MOD. A bad outcome was found in 36 cases with 33 deaths and 3 survivors. Supportive treatment was withdrawn in 15 instances, all followed by death. CONCLUSIONS: Overall, neonates and older patients did not differ with regard to good or bad outcome. However, in the neonatal group there were significantly more survivors with bad outcome, either overall or after withdrawal of support. Possible explanations for this difference include variability of hypoxic insult, maturational and metabolic differences, and the more compliant neonatal skull, which prevents brainstem herniation.
Resumo:
Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.
Resumo:
The present chapter gives a comprehensive introduction into the display and quantitative characterization of scalp field data. After introducing the construction of scalp field maps, different interpolation methods, the effect of the recording reference and the computation of spatial derivatives are discussed. The arguments raised in this first part have important implications for resolving a potential ambiguity in the interpretation of differences of scalp field data. In the second part of the chapter different approaches for comparing scalp field data are described. All of these comparisons can be interpreted in terms of differences of intracerebral sources either in strength, or in location and orientation in a nonambiguous way. In the present chapter we only refer to scalp field potentials, but mapping also can be used to display other features, such as power or statistical values. However, the rules for comparing and interpreting scalp field potentials might not apply to such data. Generic form of scalp field data Electroencephalogram (EEG) and event-related potential (ERP) recordings consist of one value for each sample in time and for each electrode. The recorded EEG and ERP data thus represent a two-dimensional array, with one dimension corresponding to the variable “time” and the other dimension corresponding to the variable “space” or electrode. Table 2.1 shows ERP measurements over a brief time period. The ERP data (averaged over a group of healthy subjects) were recorded with 19 electrodes during a visual paradigm. The parietal midline Pz electrode has been used as the reference electrode.
Resumo:
High density spatial and temporal sampling of EEG data enhances the quality of results of electrophysiological experiments. Because EEG sources typically produce widespread electric fields (see Chapter 3) and operate at frequencies well below the sampling rate, increasing the number of electrodes and time samples will not necessarily increase the number of observed processes, but mainly increase the accuracy of the representation of these processes. This is namely the case when inverse solutions are computed. As a consequence, increasing the sampling in space and time increases the redundancy of the data (in space, because electrodes are correlated due to volume conduction, and time, because neighboring time points are correlated), while the degrees of freedom of the data change only little. This has to be taken into account when statistical inferences are to be made from the data. However, in many ERP studies, the intrinsic correlation structure of the data has been disregarded. Often, some electrodes or groups of electrodes are a priori selected as the analysis entity and considered as repeated (within subject) measures that are analyzed using standard univariate statistics. The increased spatial resolution obtained with more electrodes is thus poorly represented by the resulting statistics. In addition, the assumptions made (e.g. in terms of what constitutes a repeated measure) are not supported by what we know about the properties of EEG data. From the point of view of physics (see Chapter 3), the natural “atomic” analysis entity of EEG and ERP data is the scalp electric field
Resumo:
The general model The aim of this chapter is to introduce a structured overview of the different possibilities available to display and analyze brain electric scalp potentials. First, a general formal model of time-varying distributed EEG potentials is introduced. Based on this model, the most common analysis strategies used in EEG research are introduced and discussed as specific cases of this general model. Both the general model and particular methods are also expressed in mathematical terms. It is however not necessary to understand these terms to understand the chapter. The general model that we propose here is based on the statement made in Chapter 3, stating that the electric field produced by active neurons in the brain propagates in brain tissue without delay in time. Contrary to other imaging methods that are based on hemodynamic or metabolic processes, the EEG scalp potentials are thus “real-time,” not delayed and not a-priori frequency-filtered measurements. If only a single dipolar source in the brain were active, the temporal dynamics of the activity of that source would be exactly reproduced by the temporal dynamics observed in the scalp potentials produced by that source. This is illustrated in Figure 5.1, where the expected EEG signal of a single source with spindle-like dynamics in time has been computed. The dynamics of the scalp potentials exactly reproduce the dynamics of the source. The amplitude of the measured potentials depends on the relation between the location and orientation of the active source, its strength and the electrode position.
Resumo:
A publication entitled “A default mode of brain function” initiated a new way of looking at functional imaging data. In this PET study the authors discussed the often-observed consistent decrease of brain activation in a variety of tasks as compared with the baseline. They suggested that this deactivation is due to a task-induced suspension of a default mode of brain function that is active during rest, i.e. that there exists intrinsic well-organized brain activity during rest in several distinct brain regions. This suggestion led to a large number of imaging studies on the resting state of the brain and to the conclusion that the study of this intrinsic activity is crucial for understanding how the brain works. The fact that the brain is active during rest has been well known from a variety of EEG recordings for a very long time. Different states of the brain in the sleep–wake continuum are characterized by typical patterns of spontaneous oscillations in different frequency ranges and in different brain regions. Best studied are the evolving states during the different sleep stages, but characteristic EEG oscillation patterns have also been well described during awake periods (see Chapter 1 for details). A highly recommended comprehensive review on the brain's default state defined by oscillatory electrical brain activities is provided in the recent book by György Buzsaki, showing how these states can be measured by electrophysiological procedures at the global brain level as well as at the local cellular level.
Resumo:
A 57-year-old man, operated eight years before for a left frontal falx meningioma, presented with short lasting, stereotyped episodes of paresthesias ascending from the right foot to the hand. A diagnosis of somatosensory seizures with jacksonian march was made. The patient was given antiepilectics but 5 days later, a few hours after another paresthesic episodes, he developed right hemiplegia, hemianesthesia and dysartria due to an infarct of left capsular posterior limb. We deem that in this patient the paresthesic episodes were more likely an expression of a capsular warning syndrome than of parietal epilepsy because of the frontal localization of the surgical lesion, the absence of motor components in all episodes, the negativity of repeated EEG, and the lack of recurrences after stroke. In capsular warning syndrome sensory symptoms mimicking a jacksonian march can be due to ischemic depolarization progressively recruiting the somatotopically arranged sensory fibers in the posterior capsular limb.
Resumo:
INTRODUCTION: We studied intra-individual and inter-individual variability of two online sedation monitors, BIS and Entropy, in volunteers under sedation. METHODS: Ten healthy volunteers were sedated in a stepwise manner with doses of either midazolam and remifentanil or dexmedetomidine and remifentanil. One week later the procedure was repeated with the remaining drug combination. The doses were adjusted to achieve three different sedation levels (Ramsay Scores 2, 3 and 4) and controlled by a computer-driven drug-delivery system to maintain stable plasma concentrations of the drugs. At each level of sedation, BIS and Entropy (response entropy and state entropy) values were recorded for 20 minutes. Baseline recordings were obtained before the sedative medications were administered. RESULTS: Both inter-individual and intra-individual variability increased as the sedation level deepened. Entropy values showed greater variability than BIS(R) values, and the variability was greater during dexmedetomidine/remifentanil sedation than during midazolam/remifentanil sedation. CONCLUSIONS: The large intra-individual and inter-individual variability of BIS and Entropy values in sedated volunteers makes the determination of sedation levels by processed electroencephalogram (EEG) variables impossible. Reports in the literature which draw conclusions based on processed EEG variables obtained from sedated intensive care unit (ICU) patients may be inaccurate due to this variability. TRIAL REGISTRATION: clinicaltrials.gov Nr. NCT00641563.
Resumo:
OBJECTIVE: In ictal scalp electroencephalogram (EEG) the presence of artefacts and the wide ranging patterns of discharges are hurdles to good diagnostic accuracy. Quantitative EEG aids the lateralization and/or localization process of epileptiform activity. METHODS: Twelve patients achieving Engel Class I/IIa outcome following temporal lobe surgery (1 year) were selected with approximately 1-3 ictal EEGs analyzed/patient. The EEG signals were denoised with discrete wavelet transform (DWT), followed by computing the normalized absolute slopes and spatial interpolation of scalp topography associated to detection of local maxima. For localization, the region with the highest normalized absolute slopes at the time when epileptiform activities were registered (>2.5 times standard deviation) was designated as the region of onset. For lateralization, the cerebral hemisphere registering the first appearance of normalized absolute slopes >2.5 times the standard deviation was designated as the side of onset. As comparison, all the EEG episodes were reviewed by two neurologists blinded to clinical information to determine the localization and lateralization of seizure onset by visual analysis. RESULTS: 16/25 seizures (64%) were correctly localized by the visual method and 21/25 seizures (84%) by the quantitative EEG method. 12/25 seizures (48%) were correctly lateralized by the visual method and 23/25 seizures (92%) by the quantitative EEG method. The McNemar test showed p=0.15 for localization and p=0.0026 for lateralization when comparing the two methods. CONCLUSIONS: The quantitative EEG method yielded significantly more seizure episodes that were correctly lateralized and there was a trend towards more correctly localized seizures. SIGNIFICANCE: Coupling DWT with the absolute slope method helps clinicians achieve a better EEG diagnostic accuracy.
Resumo:
This study explored transient changes in EEG microstates and spatial Omega complexity associated with changes in multistable perception. 21-channel EEG was recorded from 13 healthy subjects viewing an alternating dot pattern that induced illusory motion with ambiguous direction. Baseline epochs with stable motion direction were compared to epochs immediately preceding stimuli that were perceived with changed motion direction ('reference stimuli'). About 750 ms before reference stimuli, Omega complexity decreased as compared to baseline, and two of four classes of EEG microstates changed their probability of occurrence. About 300 ms before reference stimuli, Omega complexity increased and the previous deviations of EEG microstates were reversed. Given earlier results on Omega complexity and microstates, these sub-second EEG changes might parallel longer-lasting fluctuations in vigilance. Assumedly, the discontinuities of illusory motion thus occur during sub-second dips in arousal, and the following reconstruction of the illusion coincides with a state of relative over-arousal.